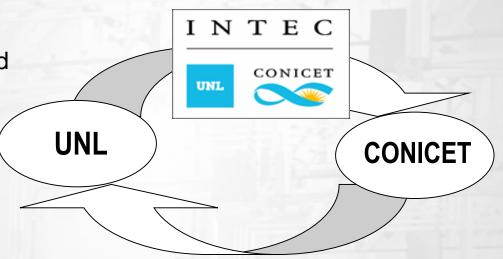
Universidad Nacional del Litoral (UNL)

University, created in 1919.

The quality of the graduated students, significant advances in research, the permanent transfer of science, technology and culture and its integration into the world, have generated a high social recognition and a position as an educational and cultural leader in the region and the country.


Instituto de Desarrollo Tecnológico para la Industria Química INTEC (UNL – CONICET)

Multidisciplinary Institute focus on Engineering and Technology

Universidad Nacional del Litoral is a public higher education institution founded in 1919.

Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET) is the main organization in charge of the promotion of Science and Technology in Argentina. The main objective of this agency is to boost and implement scientific and technical activities in the country and in all different fields of knowledge.

Where are we?

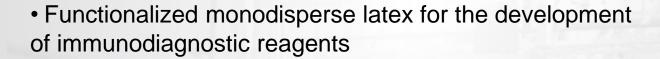
Polymer and Polymerization Reactors Group

Main Activities

- **1.** Research and development on:
 - **✓ Polymer Characterization**
 - ✓ Mathematical Modeling, Simulation and Control of Polymerization

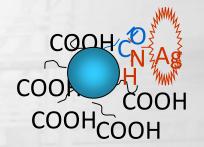
Processes

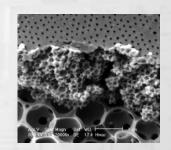
- ✓ Polymer Synthesis
- 2. Teaching at undergraduate and graduate programs
- 3. Analytical services and technology transfer to industry


Polymer and Polymerization Reactors Group

INTEC 40 Años

Current Research Topics


Polymer Synthesis

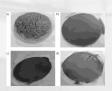

- Hybrid polymeric nanoparticles from renewable sources
- Hydrogels and nanogels for biomedical applications

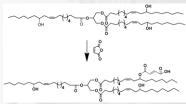
- Nanostrutured membranes for water treatment
- Mono- and multilayer membranes for controlled delivery systems
- Bio-inspired and recyclable polymers

Polymer and Polymerization Reactors Group

Current Research Topics

Polymer Synthesis


• Formaldehyde resins (phenolic, urea and melamine resins): both traditional and modified with renewable resources



• Flame retardant phenolic (polybenzoxazines) and epoxy resins

$$\bigcap_{R'} \bigcap_{R} \bigcap_{R'} \bigcap$$

- Styrene polymers: polystyrene, high impact polystyrene, ABS and MBS with controlled molecular structure
- Polyurethanes based on vegetal oils
- Polymer for drilling fluids

Facilities

The total area of laboratories is approximately 150 m² (6 labs).

Polymerization Reaction Systems

- Totally equipped reactors, with computerized dosification, monitoring and control systems
- Tumbled polymerization reactor
- Ultrasonic equipment (Sonics VC 750)
- Dispersing rotor-stator Homogenizer (Kinematica AG PT 2500 E)

Characterization of Molecular Weights

- 2 Gel Permeation chromatographs (Waters), fitted with the following detectors: differential refractometer (Waters), UV spectrophotometer (Waters), specific viscosity (Viscotek 200), and multi-angle light scattering (DSP, Wyatt)
- Capillary viscometer (Schott Geräte)
- Membrane and vapor pressure osmometers (Knauer)

Characterization of Colloids

- Multiangle laser light scattering equipment (Brookhaven BI 200 y SM BI 9000).
- Capillary hydrodynamic chromatograph CHDF 2000 (Matec)
- Turbiscan (TMA2000)

Facilities

Characterization of Thermal and Mechanical Properties

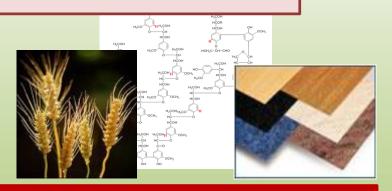
- Differential Scanning Calorimeter and Thermogravimetric Balance (Mettler).
- Discovery Mass Spectrometer and DMA Q800.
- Tensile test equipment (INSTRON)
- Thermal press

General Instrumentation and Equipment

- Gas chromatograph fit with FID and MS detectors (Perkin Elmer)
- Spectrometer UV/Vis (Perkin Elmer)
- Automatic Potentiometric Titrator with pHmeter (KEM AT-510)
- Brookfield Viscometer (Brookfield)
- High-speed Centrifuge (Heal Force, R18)
- Ultrasonic Baths (Cleanson)
- Drying ovens with vacuum and natural and forced convection

Other facilities

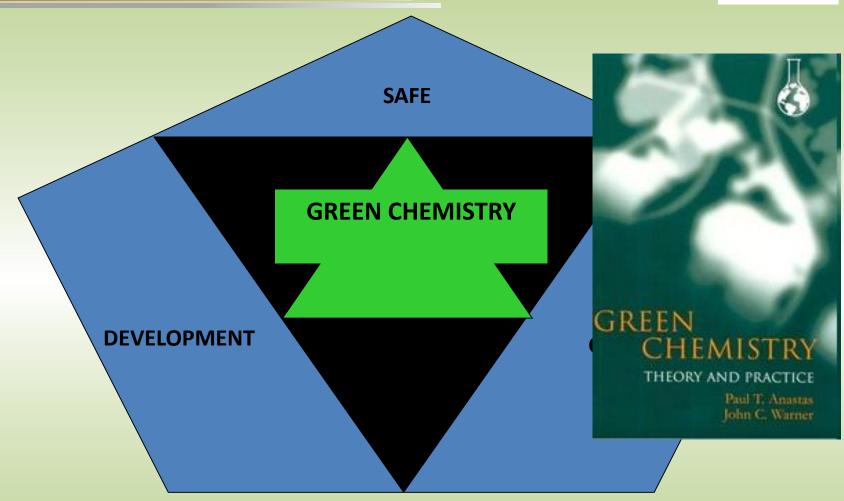
- Electronic Microscopy of polymeric particles and materials (TEM, SEM, AFM)
- Nuclear Magnetic Resonance (NMR)
- Fourier Transform Infrared Spectroscopy (FTiR)


New Developments on Polymeric Materials and Sustainable Technologies based on the Use of Renewable Resources

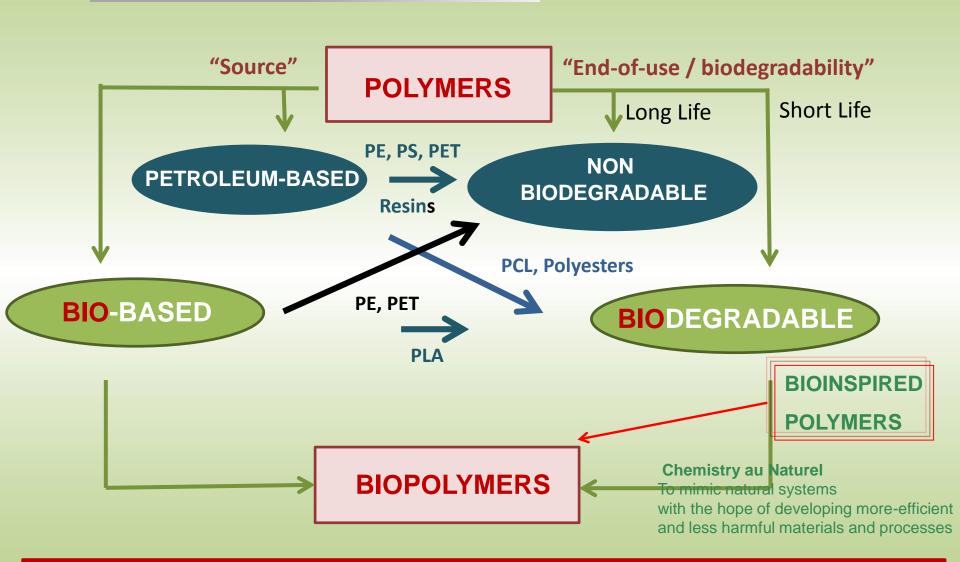
Diana A. Estenoz

OUTLINE

- BIOPOLYMERS AND BIO-BASED POLYMERS
- ONGOING RESEARCH
- POLYMERS FROM RENEWABLE RESOURCES:
 - ✓ POLYURETHANES BASED ON VEGETABLE OILS
 - **✓** AN INDUSTRIAL APPLICATION OF LIGNIN BASED RESOL
- CONCLUSIONS


Environmental impact associated with commercial materials and to high energy inputs

environmentally-benign alternatives?



ONGOING RESEARCH

Developments of new polymeric materials based on renewable resources. The use of raw materials, by-products and residues of industries or primary activities for their application to a second value chain is investigated.

- a) Acrylic-protein hybrid latex for coatings and adhesives based on proteins from dairy industry and by-product of oil and bioethanol industry;
- b) Thermoplastic, elastomeric and thermosetting polyurethanes based on vegetable oils and glicerol (by-product of biodiesel industry) for coatings, membranes and foams;
- c) Formaldehyde resins modified with lignin (residue of paper industry) and furfural (residue of agroindustry) for adhesives and laminates;
- d) Polybenzoxazines and epoxi resins modified with lignin for highperformance applications;
- e) Polylactic acid from whey (dairy industry residue) for replacement of traditional thermoplastics

ONGOING RESEARCH

Main objectives:

Development of sustainable technologies for the production of materials with a reduction of energy requirements and costs, and minimizing the use of toxic compounds, and waste disposal.

An integral study of processes.....

- i) the chemical modification and characterization of renewal resources;
- ii) the synthesis of materials;
- iii) the structural characterization of prepolymers and polymers;
- iv) the physico-chemical characterization of materials in a function of their application and end-use;
- v) the biodegradation and environmental impact of synthesized materials; and
- vi) the modelling, simulation and optimization of processes.

OH

Castor Oil

- → Renewability
- → Availability
- **→** Low cost
- ÓН OH
- → Unusual chemical composition

Ester reactions:

Hydrolisis Esterification **Alcoholysis**

Saponification

Reduction

Double Bond Reactions:

Oxidation,

Polymerization

Hydrogenation

Epoxidation

Halogenation

Addition

Hydroxyl Group Reactions:

Dehydration

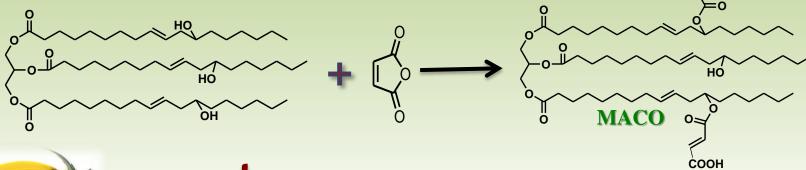
Hydrolysis

Pyrolysis

Alkoxylation

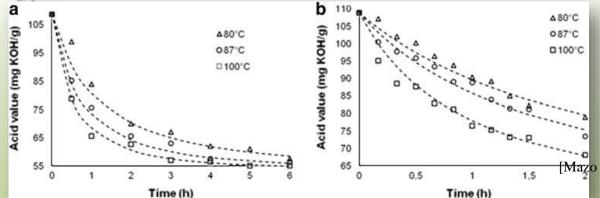
Esterification

Urethane Formation


Aim: Synthesis of PUs based on castor oil with good mechanical properties and biodegradable

Experimental work

Chemical modification of castor oil (MACO)



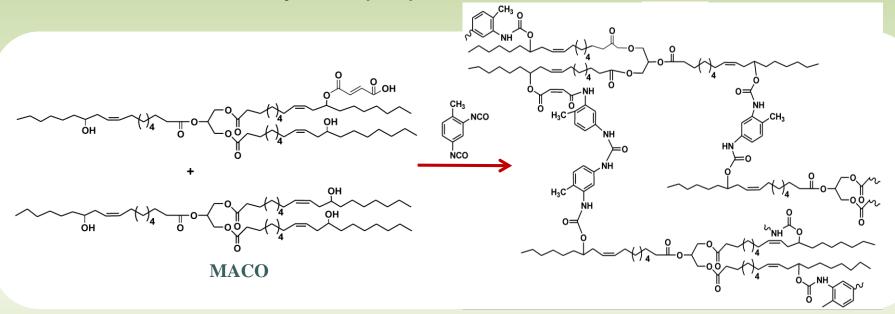
Castor oil
Maleic Anhydride

The scheme is a simplification; since statistically there could be triglyceride molecules reacted with zero, one, two or three maleic anhydride molecules.

HOOC

[Mazo et al, Chem. Eng. J., 185-186, 347-351 (2012)]

[Mazo et al, Lat. Am. Ap. Res., 4, 11-15 (2011)]


[Mazo et al, J. Am. Oil Chem. Soc., 89(7), 1355-1361 (2012)]

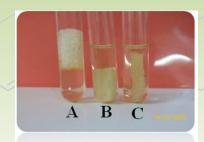
[Mazo et al, Polímeros Ciencia y Tecnología, 19 (2), 1-6 (2009]

Preparation of polyurethane foams from Toluene Diisocyanate (TDI) and Castor Oil / MACO

TDI:OH molar ratio. Water: 1.5g; TEA: 0.25g; Silicon: 0.5g; stannum octoate: 0.2g.

Main Properties


Sample	Weight Ratio (%)	Density (Kg/m³)	Tensil Resistance (KPa)	Elongation (%)	Water Absorption (%)
MACO	100	40.93	190.65	100.74	-
MACO/CO	75:25	50.61	187.50	96.80	100
MACO/CO	25:75	130.40	169.30	90.00	80.26
POLIETER	100	43.64	137.84	89.54	39.59



Biodegradation study in liquid culture medium.

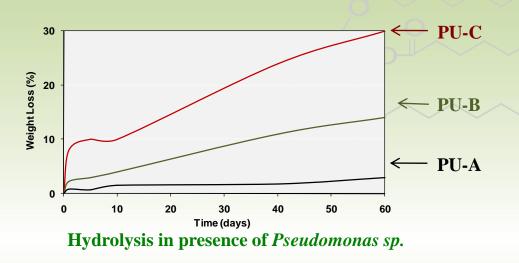
- □Pseudomonas sp
- □Aspergillus niger
- □ Aspergillus clavatus

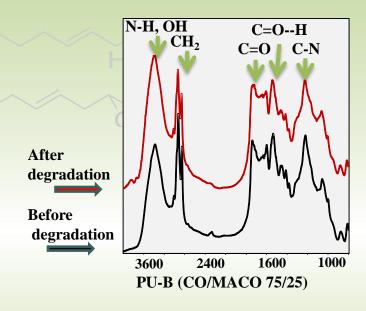
Incubated at 30°C for 60 days

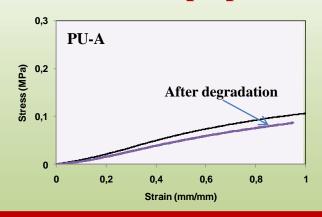
Measurements:

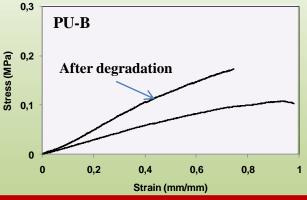
- ☐ Mass loss along the process (by gravimetry)
- ☐ Bacterial growth (by viable cell)
- ☐ Chemical and morphological structures before and after degradation (by FT-IR and SEM)
- **☐** Mechanical properties (by traction tests)
- ☐ Toxicity (by bacterial Microtox bio-assay)
- ☐ Chemical characteristics of low molar-mass biodegradation products (by GC/MS in

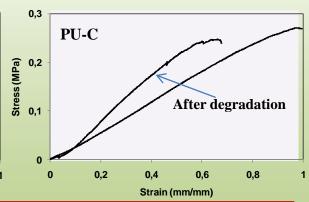
combination with NMR)


[Sponton et al., 1 Int. Biodet. Biodeg., 85, 85-94 (2013)]

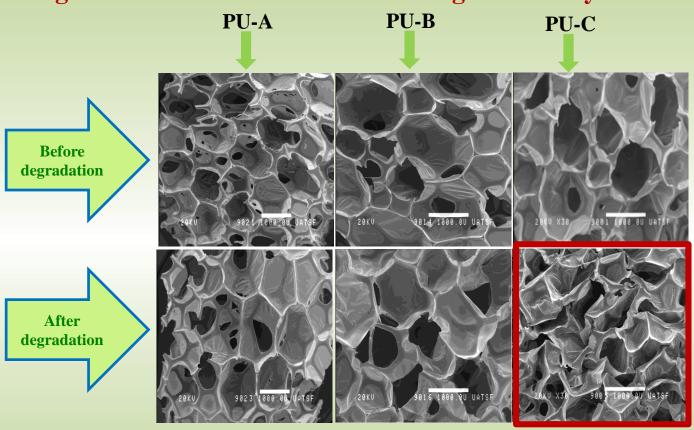



Pseudomonas sp.


Chemical structures by IR



Mechanical properties



Morphological structures before and after degradation by SEM

PU foams from MACO exhibit mechanical properties comparable to commercial foams with considerable increase in degradation rates.

[Sponton et al., 1 Int. Biodet. Biodeg., 85, 85-94 (2013)]

DECORATIVE LAMINATES

HIGH PRESSURE (HP)

LOW PRESSURE (LP)

Decorative Paper impregnated with melamine-formaldehyde

resin

Kraft Papers

impregnated with resol-type phenol-formaldehyde resin

• Temperature = 152°C

• Pressure = 70 Kg/cm²

Decorative Paper impregnated with melamine-formaldehyde

resin

Conglomerated Wood

• Temperature = 170°C

• Pressure = 24 Kg/cm²

Aim: Partial Substitution of Phenol in Resol by a Modified Lignin

THE INDUSTRIAL PROCESS

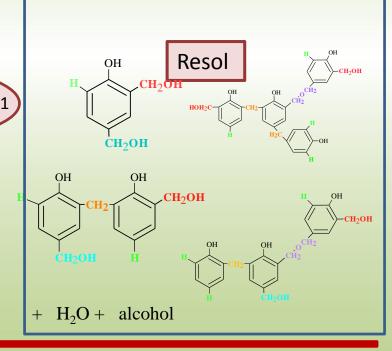
1- PHENOL-FORMALDEHYDE BASE RESIN SYNTHESIS

37% w/w

 Aqueous solution of phenol 91% w/w

ol 📗

Aqueous solution of formaldehyde


Н

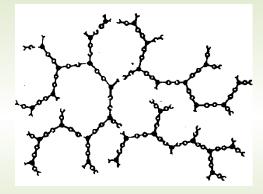
[Formaldehyde]/ [Phenol] > 1

Conditions:

Temperature: 95 °C

pH: 9.0

2- DRYING AND IMPREGNATION


Impregnation machine

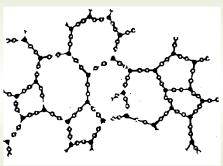
Metering Rolls

Knife

Oven Temperature: 135 °C

3- PRESSING

Cold-Hot Multi-Opening Press



Hot Single-Opening Press

Laminates/pressing: 160 (HP)

Temperature: 142 - 152 °C during 35 min.

Pressure: 70 kg/cm²
Total time: 65 min.

Laminates/pressing: 2 (HP)

1 (LP)

Temperature: 160 - 170 °C

Pressure: 24 kg/cm² (HP)

70 kg/cm² (LP)

Total Time: 1 min.

RESOL VS LIGNINS

Advantages

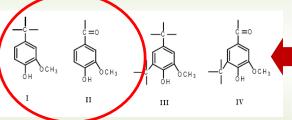
- Natural Polymer
- Abundant
- Economical
- Similar structure to resol

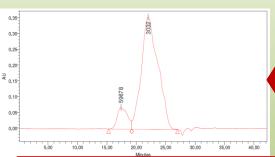
Disadvantages

- Chemical structure depends on the and the type isolation wood method
- Low reactivity

HC=O

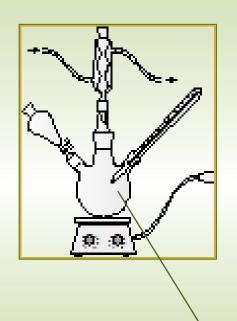
FROM LABORATORY TO INDUSTRY ...


- 1. Lignins Characterization (lignosulfonate, kraft and organoly).
- 2. Lignins Hydroxymethylation (Laboratory).
- 3. Optimization of lignosulfonate hydroxymethylation.
- 4. Synthesis of traditional resols, and modified resols (obtained by replacing up to 10%w/w of phenol by sodium lignosulfonate.
- 5. Obtention of laminates: curing of impregnated papers.
- 6. Physical and mechanical characterization of laminates.

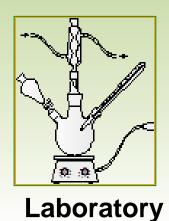


LIGNINS CHARACTERIZATION

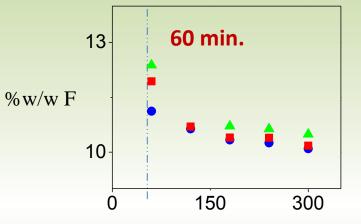
				LK	LO	LS	
	% Dry Matter			4.48	3.66	8.89	
	% Ash (dry basis)			21.67	0.05	23.45	
	% Sugar, acids and polysacharides content (dry basis)			5.16	4.30	13.63	
		Stru	ct. I	2.39	0.61	1.37	
, (% Phenolic	Stru	ct. II	0.37	0.87	0.1	
	ОН	OH Stru	ct. III	0.9	7 79	0.03	
		Stra	JC. 111	2.76	1.48	1.47	
	Struc		ct. IV	0.03	0.10	0.55	
	% Lignosulfor	nate				62.28	
4	MWD (Fraction 1) Mn (g/mol) Mw (g/mol)		40655				
4			Mw (g/mol)	57314			
	MWD (Fraction	nn 21	Mn (g/mol)	2080			
ļ	TOTAL (Fraction		Mw (g/mol)	3253			


Reactive OH

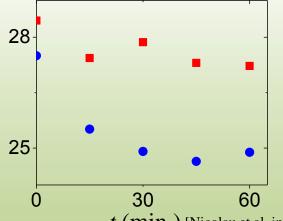
LIGNINS HYDROXYMETHYLATION (LABORATORY)


	LK	LO	LS			
Recipe:						
% F p/p	9.02	9.01	9.00	9.14		
% NaOH p/p	1.38	1.35	1.41	0		
% L p/p	6.11	6.12	6.13	6.03		
F°/OH _r °	30.62	56.32	56.86	56.86		
Reaction Conditions:						
T (°C)	50	50	50	50		
рН	12.17	11.69	12.09	8.46		
t (min)	240	240	240	240		

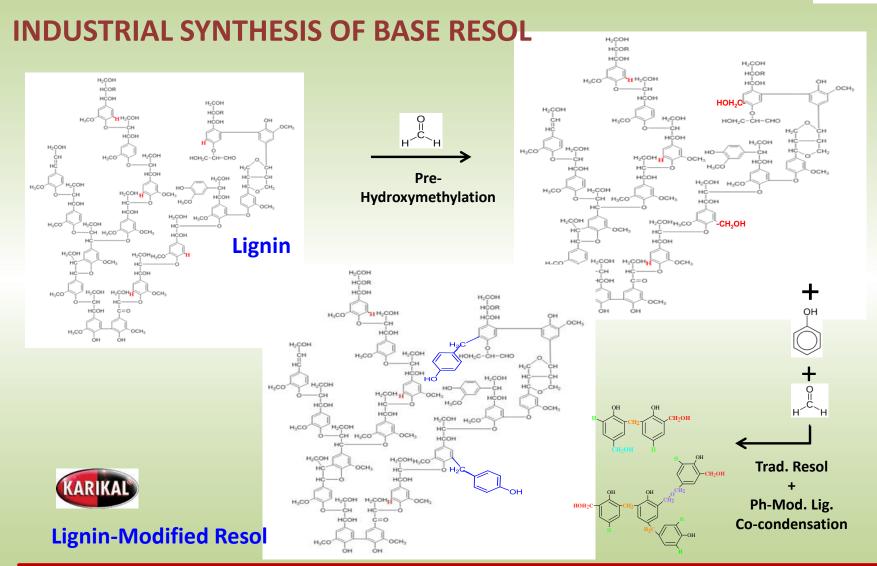
Free Formaldehyde Determination (ISO 11402:2004)



OPTIMIZATION OF LIGNOSULFONATE HYDROXYMETHYLATION


F/Lignin = 1.5 w/w [F]°= 14 mol/L

F/Lignin = 1.5 w/w [F]°= 29 mol/L %w/w F

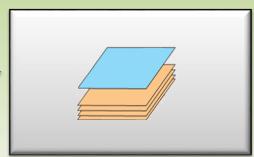


Industry

t (min.) [Nicolau et al, in presss, Ind. Eng. Chem. Res. (2013)]

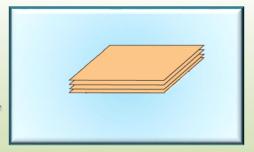
OBTENTION OF LAMINATES: CURING OF IMPREGNATED PAPERS

Impregnation of Papers


T = 135 °C

Industrial Pressing

 $T = 150 \,^{\circ}C; P = Kg/cm^2; t = 51 \,^{\circ}min.$

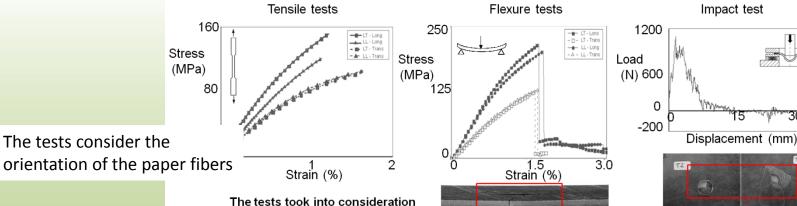


- ✓ Water Boiling Resitance
- ✓ Ball Impact Resistance

Pilot Plant Pressing

 $T = 150 \,^{\circ}\text{C}$; $P = 35 \,^{\circ}\text{Kg/cm}^2$; $t = 30 \,^{\circ}\text{min}$.

- ✓ Tensile Strength
- √ Flexural Strength
- ✓ Dart Impact Resistance
- ✓ Delamination



FINAL PROPERTIES OF LAMINATES

	Increment	Traditional Laminate	Modified Laminate		
Water Boiling Resistance (IRAM 13367)	Mass, %	8.43	10.8		
	Thickness, %	11.7	14.4		
Ball Impact Resistance (IRAM 13370)		Not af	Not affected		

Mechanical Properties of Core Kraft Papers Impregnated with Traditional or Modified Resols

the orientation of the paper fibers.

Failure of samples in flexure

Delamination in impact

CORE OF KRAFT PAPERS IMPREGNATED WITH TRADITIONAL OR MODIFIED RESOLS. MECHANICAL PROPERTIES

	Property		Laminate type		p*	
Test		Orientation	Traditional	Modified	Type of laminate	Orient.
_ " /**	Resistance (MPa)	Longitudinal	132 ±14	122 ±20	0,226	1,20×10 ⁻²
Tensile (ASTM D3039/D		Transversal	109±8	105±2		
3039M-00	Elastic modulus (GPa)	Longitudinal	14,2 ±2,2	12,9 ±1,5	0,168	4,00×10 ⁻⁴
		Transversal	10,5±0,5	10,2±0,3		
3 Point- Flexure (ASTM D790-03)	Resistance	Longitudinal	209±13	199±12	0.572	<2,00×10 ⁻¹⁶
	(MPa)	Transversal	124±4	129±1	0,575	
	Elastic modulus (GPa)	Longitudinal	16,9±0,5	16,1±0,3	0,200	<2,00×10 ⁻¹⁶
		Transversal	9,64±0,29	9,96±0,09		
Dart impact (ASTM D5628- 96)	Absorbed energy (J/mm)		1,25 ±0,11	1,42 ±0,16	0,125	
	Maximun impact load (kN/mm)		0,330 ±0,010	0,360 ±0,030	0,111	

Bio-based laminates exhibited mechanical properties similar to those of traditional laminates.

[Taverna et al, LAAR, in press (2015)]

CONCLUSIONS

A wide range of polymers derived from renewable resources are available for various applications.

The selected examples include polyurethanes from vegetal oils and resols modified by lignins.

Polyurethanes from castor oil have exhibited biodegradability and susceptibility to hydrolytic degradation. Also, the mechanical performances were comparable to those of traditional polyurethanes.

Bio-based resols containing lignins as replacement of phenol were used for the fabrication of decorative laminates. Bio-based laminates exhibited mechanical properties similar to those of traditional laminates.

Phenol is a commodity, tracks oil price. Current prices of lignin and phenol indicate that lignin provides 20% saving.

