Genomics Based Approaches to Genetic Improvement in Sugarcane

Robert Henry
Centre for Plant Conservation
Genetics

Life Enriched by Plant Biodiversity
Plant Resources
FOR FOOD, FUEL OR CONSERVATION

ROBERT HENRY
Food
Biomass options

- Sorghum
- Sugarcane
- Grasses
- Shrubs
- Trees
Special Journal Issues- Biofuels
Special Journal Issues-SNP
Genotyping by mass analysis

Allele 1
EXTEND Primer (23-mer)

CTA

extended Primer (24-mer)

+ Enzyme
+ ddGTP/ddATP
+ dCTP/dTTP

Allele 2
EXTEND Primer (23-mer)

GTA

eXtended Primer (25-mer)

21 22 23 24 25 26 27 28
Example of SNP genotyping for breeding selection

Rice quality
Endonucleolytic mutation analysis by internal labelling (EMAIL)∗

Technologies for different applications

- **RT-PCR**: 100,000 SNPs, 1,000 samples
- **MassARRAY®**: 10,000 SNPs, 100 samples
- **WGS**: 1,000 SNPs, 10 samples
SNP Discovery

454 Sequences of sugarcane genes
NGS applications for SNP discovery

- Amplicon sequencing
- cDNA sequencing
- Sequencing of gene rich regions
- Whole genome sequencing
SNP discovery in sugarcane
Summary of SNP detection in 454 sequences of 300 amplicons

<table>
<thead>
<tr>
<th></th>
<th>Female (S. officinarum) parent</th>
<th>Male (offic. X spont.) Parent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Products with one consensus seq.</td>
<td>247</td>
<td>242</td>
</tr>
<tr>
<td>Total length of amplicons</td>
<td>58 kb</td>
<td>57 kb</td>
</tr>
<tr>
<td>Products with one or more SNPs</td>
<td>213</td>
<td>227</td>
</tr>
<tr>
<td>Products SNPs absent</td>
<td>34</td>
<td>15</td>
</tr>
<tr>
<td>SNPs with rare allele frequency ≥ 4%</td>
<td>1,013</td>
<td>1,632</td>
</tr>
<tr>
<td>Mean SNPs per amplicon</td>
<td>4.76</td>
<td>7.19</td>
</tr>
<tr>
<td>Average sequence depth at SNP sites</td>
<td>279</td>
<td>257</td>
</tr>
<tr>
<td>Candidate SD SNPs (4% to 15% freq.)</td>
<td>216</td>
<td>788</td>
</tr>
</tbody>
</table>
Frequency of rare SNP allele

Minor allele proportion in 454 sequences

No. of SNP sites
454 SNP discovery

• One SNP every: 35/58 bases
• Developed SNP identification macros that also produce a consensus sequence with SNP sites coded ready for MassARRAY Assay Design software
• ~ 90% of assays validated a SNP
• Published in Plant Biotechnology Journal
Pipeline for mapping genes of interest using SNPs

Discover & evaluate SNPs

Develop/test SNP marker assays

Genotype mapping population

454 re-sequencing

Sequenom MassARRAY platform
Impact of NGS

• Gene discovery
• Promoter analysis
• Expression profiling
• Conventional breeding
• GM sugarcane
Classical Approaches

Example:
Sucrose Phosphate Synthase
Southern Cross Plant Genomics

- NGS sequencing facility (ARC)
- Bioplatforms Australia (NCRIS)
- Intersect (NSW)
THE SEQUENCING RACE

The increasingly crowded market for genome-sequencing machines includes new entrants looking to push the boundaries in both speed and accuracy.

SOLiD 3 R&D, now and future direction

- Currently exceeding 40Gb
- Sequencing to 100 bp
- 1B tags through greater bead density
- 100Gb by end of year
- Road map for 250Gb
- $10K genome at high coverage by end of year
NGS experiments

- Wheat genome sequencing
- *Oryza* reference genome sequencing
- Sugarcane gene sequencing
- Wheat transcriptome analysis
- Rainforest biodiversity
- Eucalypt genome re-sequencing
Next Generation DNA sequencing accelerated discovery of genes for food and energy traits
Sugarcane genome sequencing
Relationships within the Sorghum Genus

- S. exstans [S]
- S. intrans [S]
- S. angustum [S]
- S. interjectum [S]
- S. ecarinatum [S]
- S. brachypodum [S]
- S. matarankense [P]
- S. stipoideum [S]
- S. timorense [P]
- S. amplus [S]
- S. bulbosum [S]
- S. plumosum [S]
- S. grande [P]
- S. leiocladum [P]
- S. nitidum [P]
- S. purpureo-sericeum [P]
- S. versicolor [P]
- S. X alnus [E]
- S. arundinaceum [E]
- S. bicolor [E]
- S. X drummondi [E]
- S. halepense [E]
- S. propinquum [E]
- S. macroporum [C]
- S. laxiflorum [H]
- Cleistachne sorghoides
- Zea mays
- Hordeum vulgare
Sugarcane Genome Sequencing-CRC Project

- SCU/CSIRO
- Focus on gene rich parts of genome
- Establishes allelic diversity within and between genotypes
- Assignment of alleles to genomes
- Target SNP mining
- Facilitates gene mapping
- International collaboration
Sugarcane volume

• GENETICS, GENOMICS AND BREEDING IN CROP PLANTS

• Volume 10
 Sugarcane Robert Henry Editor
Biofuels CRC

Mission:
Transport energy self sufficiency and reduced carbon emissions from Australian transport
Acknowledgements
Acknowledgements
Sugarcane SNP discovery and analysis

SCU
Giovanni Cordeiro
Peter Bundock
Frances Eliott
Ouzi Amouyal
Robert Henry

CSIRO
Karen Aitken
Rosanne Casu
Graham Bonnett
Lynne McIntyre

[SIIB logo]

[Southern Cross University logo]