Biotechnology Applications of Sugar cane Genetic Transformation

Dr. Helaine Carrer
Universidade de São Paulo-ESALQ
Sugarcane in Brazil

- Largest world Producer
- Availability of land with good soil fertility
- Good clime conditions
- Generate almost 1 million direct jobs and supports 70,000 independent farmers
- Sugar Production Plants well established
- Government resource incentive to ethanol production
- The use of Ethanol, greenhouse emissions were reduced by 43 million tons of CO2 (2004-2008), equivalent to plant 150 million trees

Source: UNICA
Perspective of Expansion of Sugarcane Production in Brazil

<table>
<thead>
<tr>
<th></th>
<th>2007/08</th>
<th>2015/16</th>
<th>2020/21</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production of Sugarcane (millions ton)</td>
<td>469</td>
<td>829</td>
<td>1.038</td>
</tr>
<tr>
<td>Cultivated Area (millions ha)</td>
<td>7.8</td>
<td>11.4</td>
<td>13.9</td>
</tr>
<tr>
<td>Sugar (million ton)</td>
<td>31.0</td>
<td>41.3</td>
<td>45.0</td>
</tr>
<tr>
<td>Int. consumption and storage</td>
<td>12.4</td>
<td>11.4</td>
<td>12.1</td>
</tr>
<tr>
<td>Exportation</td>
<td>18.6</td>
<td>29.9</td>
<td>32.9</td>
</tr>
<tr>
<td>Ethanol (billions liters)</td>
<td>22.5</td>
<td>46.9</td>
<td>65.3</td>
</tr>
<tr>
<td>Int. consumption and storage</td>
<td>18.9</td>
<td>34.6</td>
<td>49.6</td>
</tr>
<tr>
<td>Exportation</td>
<td>3.6</td>
<td>12.3</td>
<td>15.7</td>
</tr>
<tr>
<td>Bioeletricity (MW average)</td>
<td>1.800</td>
<td>11.500</td>
<td>14.400</td>
</tr>
<tr>
<td>Participation in the electrical matrix</td>
<td>3%</td>
<td>15%</td>
<td>15%</td>
</tr>
</tbody>
</table>

Source: UNICA, nov 2008
87% of Brazilian sugarcane production

50% of gasoline consumption
Replaced by ethanol produced on
Nearly 1% of Brazilian arable land
(3 million ha)
Kingdom: Plantae
Phylum: Magnoliophyta
Class: Liliopsida
Order: Cyperales
Family: Poaceae
Genus: Saccharum
Species: S. officinarum, S. spontaneum, S. robustum, S. sinense, S. barberi, S. edule
CLASSICAL BREEDING

Results of genetic crossings:

• High level of sucrose
• Disease resistance cultivars
• improved ratooning ability

Limitations of the classical breeding:

• Complex polyploid-aneuploid genome
• Narrow genetic basis
• Poor fertility
• Long breeding program (12 - 15 years)
 (back-crossing to recover elite germoplasms with desired agronomic traits is time consuming)
Biotechnology offers excellent opportunities for sugarcane crop improvements
BIOTECHNOLOGY

Research Areas:

4.1. Genetic maps by molecular markers

4.2. Tissue and cell culture

4.3. Incorporation of desired genes – Transgenics
MOLECULAR MARKERS

Applications:

• Understanding commercial cultivar origins
• Identification of diversity and genetic variability
• Introgression and QTLs identification
• Diagnostics of disease resistance or tolerance
• Structural and functional genomics
Research Areas:

4.1. Genetic maps by molecular markers

4.2. Tissue and cell culture
TISSUE and CELL CULTURE

- Callus culture: Nickell, 1969
- Plant regeneration: Barba e Nickell, 1969
 Heinz e Mee, 1969

Success on plant regeneration:
- Micropropagation
- Somaclonal variation
- Basis for Genetic transformation
Explants: Immature Leaves
TISSUE and CELL CULTURE

Sugarcane Callus Induction

2,4-D

BAP
TISSUE and CELL CULTURE

Embryogenic Callus

RB72454
TISSUE and CELL CULTURE

Sugarcane Plant Regeneration from embryogenic callus
Shoot regeneration in MS medium with BA (0.1 mg/L), after callus induction on MS with 2,4-D (8.0 mg/L) in the dark.
Research Areas:

4.1. Genetic maps by molecular markers

4.2. Tissue and cell culture

4.3. Introduction of desired genes – Transgenics
Sugarcane Transformation

- Protoplasts with PEG: Chen et al, 1987
 - low efficiency and poor reproducibility

- Electroporation: Rathus and Birch, 1992
 - no plant regeneration

First Transformed Commercial Cultivar:
- gene \textit{npt-II}, in Australia: Bower e Birch, 1992 (microprojectile-mediated transformation)
Explants: Immature Leaves

Callus Induction

Embryogenic Callus

Direct Embryogenesis

Transformation: Bombardment and A. tumefaciens

Plant Regeneration

Selective Medium

Greenhouse

André Barbosa
<table>
<thead>
<tr>
<th>Traits</th>
<th>Gene</th>
<th>Transformation method</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reporter and selection systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neomycin phosphotransferase</td>
<td>npt-II</td>
<td>Microprojectile</td>
<td>Bower and Birch, 1992</td>
</tr>
<tr>
<td>β-Glucuronidase</td>
<td>uidA</td>
<td>Microprojectile</td>
<td>Bower and Birch, 1992</td>
</tr>
<tr>
<td>Hygromycin phosphotransferase</td>
<td>hpt</td>
<td>Agrobacterium</td>
<td>Arencibia et al., 1998</td>
</tr>
<tr>
<td>Green fluorescent protein</td>
<td>gfp</td>
<td>Agrobacterium</td>
<td>Elliott et al., 1998</td>
</tr>
<tr>
<td>Phosphinothricin acetyl transferase</td>
<td>bar</td>
<td>Agrobacterium</td>
<td>Elliott et al., 1998</td>
</tr>
<tr>
<td>Phosphinothricin acetyl transferase</td>
<td>bar</td>
<td>Agrobacterium</td>
<td>Manickavasagam et al., 2004</td>
</tr>
<tr>
<td>Herbicide resistance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bialaphos</td>
<td>bar</td>
<td>Microprojectile</td>
<td>Gallo-Meagher and Irvine, 1996</td>
</tr>
<tr>
<td>Phosphinothricine</td>
<td>bar</td>
<td>Agrobacterium</td>
<td>Enriquez-Obregon et al., 1998</td>
</tr>
<tr>
<td>Phosphinothricine</td>
<td>bar</td>
<td>Microprojectile</td>
<td>Falco et al., 2000</td>
</tr>
<tr>
<td>Glufosinate ammonium</td>
<td>pat</td>
<td>Microprojectile</td>
<td>Leibbrandt and Snyman, 2003</td>
</tr>
<tr>
<td>Disease resistance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCMV</td>
<td>SCMV-CP</td>
<td>Microprojectile</td>
<td>Joyce et al., 1998a, b</td>
</tr>
<tr>
<td>SrMV</td>
<td>SrMV-CP</td>
<td>Microprojectile</td>
<td>Ingelbrencht et al., 1999</td>
</tr>
<tr>
<td>Sugarcane yellow leaf virus</td>
<td>SCYLV-CP</td>
<td>Microprojectile</td>
<td>Rangel et al., 2003</td>
</tr>
<tr>
<td>Sugarcane yellow leaf virus</td>
<td>SCYLV-CP</td>
<td>Microprojectile</td>
<td>Gilbert et al., 2009</td>
</tr>
<tr>
<td>Fiji leaf gall</td>
<td>FDVS9 ORF 1</td>
<td>Microprojectile</td>
<td>McQualter et al., 2004a</td>
</tr>
<tr>
<td>Sugarcane leaf scald</td>
<td>albD</td>
<td>Microprojectile</td>
<td>Zhang et al., 1999</td>
</tr>
<tr>
<td>Traits</td>
<td>Gene</td>
<td>Transformation method</td>
<td>Reference</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>-----------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Pest resistance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sugarcane stem borer</td>
<td>cry1A</td>
<td>Electroporation</td>
<td>Arencibia et al., 1999</td>
</tr>
<tr>
<td>Sucargane stem borer</td>
<td>cry1Ab</td>
<td>Microprojectile</td>
<td>Braga et al., 2003</td>
</tr>
<tr>
<td>Sugarcane canegrub resistance</td>
<td>gna or pinII</td>
<td>Microprojectile</td>
<td>Nutt et al., 1999</td>
</tr>
<tr>
<td>Mexican rice borer</td>
<td>gna</td>
<td>Microprojectile</td>
<td>Legaspi and Mirkov, 2000</td>
</tr>
<tr>
<td>Sugarcane stem borer and Mexican rice borer</td>
<td>gna</td>
<td>Microprojectile</td>
<td>Setamou et al., 2002</td>
</tr>
<tr>
<td>Metabolic engineering and alternative products</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sucrose accumulation</td>
<td>Antisense soluble acid invertase</td>
<td>Microprojectile</td>
<td>Ma et al., 2000</td>
</tr>
<tr>
<td></td>
<td>Soluble acid invertase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fructo oligosaccharide</td>
<td>lsdA</td>
<td>Agrobacterium</td>
<td>Enriquez et al., 2000</td>
</tr>
<tr>
<td>Polyphenol oxidase</td>
<td>ppo</td>
<td>Microprojectile</td>
<td>Vickers et al., 2005a</td>
</tr>
<tr>
<td>Polyhydroxybutyrate</td>
<td>phaA, phaB, and phaC</td>
<td>Microprojectile</td>
<td>Brumbley et al., 2003</td>
</tr>
<tr>
<td>p-Hydroxybenzoic acid</td>
<td>hchl and cpl</td>
<td>Microprojectile</td>
<td>McQualter et al., 2004b</td>
</tr>
<tr>
<td>Tripsin inhibitors</td>
<td>Kunitz and Bower-Birk</td>
<td>Microprojectile</td>
<td>Falco and Silva-Filho, 2003</td>
</tr>
<tr>
<td>Mannose</td>
<td>manA</td>
<td>Microprojectile</td>
<td>Jain et al., 2007</td>
</tr>
<tr>
<td>Store sugar level</td>
<td>SI</td>
<td>Microprojectile</td>
<td>Wu and Birch, 2007</td>
</tr>
</tbody>
</table>
Bax inhibitor-1: BI-1: PCD Regulatory inhibitor Protein

(source: homepage http://cabm.rutgers.edu/research.html)
Co-transformation of variety RB835089 with plasmids: pHA9 (\textit{Ubi-1 :: neo:: T-Nos}) and pDM8 (\textit{CaMV35S:: AtBI-1-V5His6:: T-Nos}) pDM9 (\textit{Ubi-1 :: AtBI-1-V5His6:: T-Nos})

<table>
<thead>
<tr>
<th>Experiments</th>
<th>N of bombarded plates</th>
<th>N of bombarded calli</th>
<th>N of shoots Resistant to Geneticin</th>
<th>Plants PCR (+)\textit{neo}</th>
<th>Plants PCR (+)\textit{neo}/\textit{AtBI-1}</th>
<th>Co-transformation Efficiency (%)a</th>
</tr>
</thead>
<tbody>
<tr>
<td>pHA9+pDM8</td>
<td>66</td>
<td>3,300</td>
<td>42</td>
<td>36</td>
<td>30</td>
<td>0.91</td>
</tr>
<tr>
<td>pHA9+pDM9</td>
<td>120</td>
<td>6,000</td>
<td>139</td>
<td>94</td>
<td>67</td>
<td>1.12</td>
</tr>
</tbody>
</table>

aCo-transformation efficiency (%): total of plants with positive PCR for \textit{neo} and \textit{AtBI-1} divided by number of bombarded calli.

\begin{center}
\includegraphics[width=0.8\textwidth]{pHA9_diagram.png}
\end{center}

Genetic transformation of variety RB835089 mediated by *A. tumefaciens* EHA105 with pNW166

<table>
<thead>
<tr>
<th>Experiment</th>
<th>N° of Plates</th>
<th>N° of inoculated calli</th>
<th>N° of shoots Resistant to Geneticin</th>
<th>Plants PCR (+) neo</th>
<th>Plants PCR (+) neo/AtBI-1</th>
<th>Transformation Efficiency (%)(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrobacterium</td>
<td>25</td>
<td>1,250</td>
<td>56</td>
<td>52</td>
<td>52</td>
<td>4.16</td>
</tr>
<tr>
<td>Agrolistic</td>
<td>25</td>
<td>1,250</td>
<td>86</td>
<td>78</td>
<td>78</td>
<td>6.24</td>
</tr>
</tbody>
</table>

\(^a\) Transformation efficiency (%): total of plants with positive PCR for neo and AtBI-1 divided by number of calli inoculated into suspension of *A. tumefaciens*.

![Diagram of pNW166](image)

Watanabe & Lam, 2008
Phenotype of the root system of WT plants and transgenic plants incubated in liquid MS medium with:

T1: 0.0 Tunicumacyn
T2: 0.5 mg.L\(^{-1}\) Tunicumacyn
T3: 1.0 mg.L\(^{-1}\) Tunicumacyn

viewed on the microscope in the 10\(^{th}\) day after incubation
Plastid Genetic Transformation

Saccharum officinarum
Sugarcane
(Saccharum officinarum)
Chloroplast DNA
141,182 bp

Calsa-Junior et al., Current genetics, 2004
Chloroplast Organization

- **Double Membrane**
- **Nucleoid**
- **Grannum**
- **Thylakoid**
- **Stroma**

Leaf cell: 10 - 100 Chloroplasts
Chloroplast: 1-10 nucleoids
Nucleoid: 10 ptDNA

Nucleoid (DNA + proteins)
Chloroplast Transformation

Insertion of transgene by Homologous Recombination

It is necessary to obtain homoplasmic plants
Advantages of Plastid Transformation

- integration of transgene at specific local, in intergenic region;
- maternal inheritance;
- high protein accumulation in plastids;
- not occur genes silencing;
- it is possible to insert multiple genes in an unique transformation event;
- there are methods to eliminate the antibiotic resistance marker gene.
Accumulation of protein expressed in leaves and fruits of transplastomic tomato

Agronomical traits introduced in Plastid Genome

<table>
<thead>
<tr>
<th>Trait</th>
<th>Transgene</th>
<th>Promoter</th>
<th>5’/3’ UTRs</th>
<th>Homologous recombination site</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insect resistance</td>
<td>Cry1A (c)</td>
<td>Prrn</td>
<td>rbcL/Trps16</td>
<td>trnV/rps12/7</td>
</tr>
<tr>
<td>Herbicide resistance</td>
<td>AroA</td>
<td>Prrn</td>
<td>gagg/TpsbA</td>
<td>rbcL/accD</td>
</tr>
<tr>
<td>Insect resistance</td>
<td>Cry2Aa2</td>
<td>Prrn</td>
<td>gagg (native)/TpsbA</td>
<td>rbcL/accD</td>
</tr>
<tr>
<td>Herbicide resistance</td>
<td>bar</td>
<td>Prrn</td>
<td>rbcL/psbA</td>
<td>rbcL/accD</td>
</tr>
<tr>
<td>Insect resistance</td>
<td>Cry2Aa2 operon</td>
<td>Prrn</td>
<td>native 5’ UTRs/TpsbA</td>
<td>trnL/trnA</td>
</tr>
<tr>
<td>Disease resistance</td>
<td>MSI-99</td>
<td>Prrn</td>
<td>gagg/TpsbA</td>
<td>trnL/trnA</td>
</tr>
<tr>
<td>Drought tolerance</td>
<td>tps</td>
<td>Prrn</td>
<td>gagg/TpsbA</td>
<td>trnL/trnA</td>
</tr>
<tr>
<td>Phytoremediation</td>
<td>merA<sup>a</sup>/merB<sup>b</sup></td>
<td>Prrn</td>
<td>gagg<sup>a,b</sup>/TpsbA</td>
<td>trnL/trnA</td>
</tr>
<tr>
<td>Salt tolerance</td>
<td>badh</td>
<td>Prrn-F</td>
<td>gagg/rps16</td>
<td>trnL/trnA</td>
</tr>
<tr>
<td>Cytoplasmic male sterility</td>
<td>phaA</td>
<td>Prrn</td>
<td>PpsbA/TpsbA</td>
<td>trnL/trnA</td>
</tr>
</tbody>
</table>

^{a,b} related to genes with their respective regulatory sequence
High level of Bt protein expression

(Insertion of *cry1A* gene)

Nuclear: 2 - 3%

Chloroplast: 5-20%

MacBride et al., Bio/Techn. 1995
Kota et al., PNAS, 1999
De Cosa et al., Nat Biotech, 2001
Expression of Betaine aldehyde-dehydrogenase confers saline tolerance in carrot

(embryogenic culture)

Kumar et al., 2004
Expression of fragment-C of tetanus toxin in chloroplast genome

High expression is prejudicial to plant development - Nt-pJST10, Nt-pJST11 show low protein expression
High level Bacterial Cellulase Accumulation In Chloroplast Tobacco mediated by Downstream Box fusion

Thermobifida fusca cl6A gene
Endoglucanase

Gray et al., 2008
Sugarcane as Biofactory

Important Characteristics:

- fast growth
- efficient pathway for carbon fixation
- production of high amount of biomass
- storage system well developed (stem)
Challenges

- Improve efficiency of genetic transformation;
- Isolation of suitable genes from Eukaryotic or Prokaryotic sources;
- Control the expression of the transgene;
- Identification of suitable gene promoter elements to direct strong tissue/organ-and cell-specific expression;
- Improve stability and storage of the transgene product in the stem;
- Development of the plastid transformation technology for sugarcane.
Acknowledgements:

Collaborators:

Rutgers University, USA
Dr. Eric Lam
Dr. Pal Maliga
Dr. Michael Lawton

Max Planck Institute
Dr. Ralph Bock
Thank you!

Helaine Carrer
(hecarrer@esalq.usp.br)