Cell Therapy for Cardiac Repair: tissue protection vs. cell replacement

Jose E. Krieger, MD, PhD Professor of Genetics & Molecular Medicine Heart Institute (InCor)/Univ Sao Paulo Medical School krieger@incor.usp.br www.incor.usp.br/genetica

Post-MI Adaptations & Goals For Cardiac Cell Repair (Complex Scenario)

Post-MI Adaptations & Goals For Cardiac Cell Repair (Complex Scenario)

Biological Cardiac Repair

Cell replacement - "biological cardiomyoplasty" Angiogenesis

- The Naïve Approach

 The Naïve Approach
 Surprise
 The "Awe" Approach (surprise)
 Surprise
- 3. The Rational Approach

Controlled & Rational Use

ASC Transplantation & Cardiac Function Post-MI

Danoviz et al, *PloS One*, 2010 Santos et al, *Can J Physiol Pharmacol*, 2010

Prevention of Cardiac Function Deterioration Post-MI

Danoviz et al, PloS One, 2010

Current Challenges

- Mechanism of action underlying tissue protection
- Validate and optimize the **tissue protection** approach in more suitable animal models (e.g. pigs)
- Devise strategies for the **cell replacement** approach

Current Challenges

- Mechanism of action underlying tissue protection
- Validate and optimize the tissue protection approach in more suitable animal models (e.g. pigs)
- Devise strategies for the cell replacement approach

Closed-artery Catheter-based Myocardial Infarction Method in Pigs (Sponge implantationin LCx)

Ischemia (short-time) and Necrosis (long-time) in Pigs with Occluded LCx

Anatomopathological Analysis 30 Days after LCx Occlusion

Summary/Pig MI Model:

- These data provide evidence for a suitable closed-artery catheter-based method to produce MI in pigs;
- The MIs affect about 11% of the LV and are not accompanied by overall cardiac dysfunction.

pASC's Injection Protocol in Pigs

Experimental Design:

Α

Effect of ASC Transplantation on Myocardial blood flow Post-MI

Dariolli et al, unpubl.

Effect of ASC Transplantation on Blood Vessel Number Post-MI (PAS staining)

remote area

border area

Effect of ASC Transplantation on VEGF Expression Post-MI

Effect of ASC Transplantation on Echocardiographic MI Area

Effect of ASC Transplantation on MI Area (TTC staining)

Effect of ASC Transplantation on Overall Cardiac Function Post-MI

Estimated ASC in LV 30 Days Post-transplantation by Direct Injection (pig SRY detection)

B)

Summary/pASC Transplantation:

- These data shows that pASC can ameliorate cardiac deterioration Post-MI in pigs;
- These effects are associated with an increase angiovasculogenesis and cardiac perfusion.

Current Challenges

- Mechanism of action underlying tissue protection
- Validate and optimize the tissue protection approach in more suitable animal models (e.g. pigs)
- Devise strategies for the cell replacement approach

Prevention of Cardiac Deterioration Post-MI:

What are the Molecular Mechanisms?

Change phenotype

Scenarios for the Role of Transplanted ASCs in the Ischemic Myocardium

- 1- Cardiac microenvironment affects the transplanted ASCs (ASC stimulation):
- 2 -The secretome affects the cardiac microenvironment (secretome therapy)

Experimental Model

Interactome Analysis: Direct Interactions with VEGF

Stromelysin (MMP-3) inhibts collagen I & activates VEGF

Biological Assays

Current Challenges

- Mechanism of action underlying tissue protection
- Validate and optimize the tissue protection approach in more suitable animal models (e.g. pigs)
- Devise strategies for the cell replacement approach
 - Post-natal LV injury model
 - iPS-derived cardiomyocytes

Current Challenges

- Mechanism of action underlying tissue protection
- Validate and optimize the tissue protection approach in more suitable animal models (e.g. pigs)
- Devise strategies for the cell replacement approach
 - Post-natal LV injury model
 - iPS-derived crdiomyocytes

Cardiac Regeneration: **Post-natal** LV Resection Model in Rats

15% LV ressection

Cardiac LV Ressection Protocol in Rats

LV Cardiac Resection in 1 & 7 day old Rats

В

Pre-Ressec.

Post-Ressec.

Zogbi et al, unpublished

Cardiomyocyte Regeneration & Collagen Deposition 21 days Post-LV Injury in Rats

Picrosirius red staining

Myocardial Perfusion in 1 & 7 day old Rats LV Injury Single Photon Emission Tomography (SPECT)

ANT

LAT

Myocardial Perfusion in 1 & 7 day old LV Injury Rats Single Photon Emission Tomography (SPECT)

Afterload Hemodynamic Stress to Assess Cardiac Performance in Post-natal LV Injury Rats

Preload Hemodynamic Stress to Assess Cardiac Performance in Post-natal LV Injury Rats

Sham

Ρ7

Tissue Collagen Deposition in Post-natal LV Injury Rats (HE & Picrosirius under polarized light)

Sham

P1

P7

Summary/Rat Apex Resection:

- Data show evidence that the rat displays early cardiomyocyte neoformation in response to apex resection;
- The overall response leads to long-term preservation of cardiac function despite hypoperfusion, highlighting issues in this complex response that must be taken into account when exploring future therapeutic approaches based on this response.

Biological Cardiac Repair: Current Challenges

- Mechanism of action underlying tissue protection
- Validate and optimize the tissue protection approach in more suitable animal models (e.g. pigs)
- Devise strategies for the cell replacement approach
 - Post-natal LV injury model
 - iPS-derived cardiomyocytes

Biological Cardiac Repair

Cell replacement - "biological cardiomyoplasty" Angiogenesis

- The Naïve Approach

 The Naïve Approach
 Surprise
 The "Awe" Approach (surprise)
 Surprise
- 3. The Rational Approach

Controlled & Rational Use

Biological Cardiac Repair (cell replacement vs. tissue protection)

- Minimize cardiac structural and functional damage post-MI by seeding progenitor cells (e.g. adipocyte derived mesenchymal stem cells), carriers of factors that may influence a variety of processes (e.g. neoangiogenesis & anti-scar);
- Improve cardiac contractility post-MI by replacement of lost cells by newly seeded cardiomyocytes or precursors.

Acknowledgements

Lab Genetics & Molecular Cardiology Heart Institute (InCor)/Univ São Paulo Med Sch

> Alexandre C. Pereira Ayumi A. Miyakawa Carla Dinardo Maria de Lourdes Junqueira Renata Carmona Mariliza Velho Monica N. Bezerra

> > Vinicius Bassaneze Juliana Nakamuta Viviane Caceres Thais Girao Silva Gabriela Venturini Rafael Dariolli Leonardo Jensen Camila Zogbi Ana Elisa TS Carvalho Diogo Biagi

Cell Therapy Clinical Coordinator Luís H. Gowdak

> Hematologist Isolmar Schettert

CV Surgery InCor Sergio A Oliveira L F Dalan

Tucci's Group – EPM-UNIFESP Paulo J. F. Tucci

Federal Univ. Espirito Santo Leonardo Campos

Funding: FAPESP, CNPq, F Zerbini, MCT-FINEP, MS-DECIT

Coronary Artery Disease

Total and Regional LV Ischemic Score Assessed by MRI & BMC Injection

Efficacy – Controlled Double Blind Randomized Trials:

1. BMSC in Chronic CAD (Incomplete CABG) (N=140, 1:1)

2. BMSC in Chronic CAD (TMLR) (N=50, 1:1)