Reality Check: Practical Limitations of Technical Privacy Protection

Hans-Joachim Hof

MuSe - Munich IT Security Research Group
Munich University of Applied Sciences

hof@hm.edu
http://muse.bayern
Prof. Dr.-Ing. Hans-Joachim Hof

University of Karlsruhe, Germany
Karlsruhe Institute of Technology (KIT)
- CS student, PhD student, lecturer

SAP Markets, Palo Alto, USA
- Software Developer

Siemens AG, Corporate Technology
- Research Center „IT Security“

Munich University of Applied Sciences
- Full Professor
- Leader Munich IT Security Research Group
 - Network Security
 - Software Security

German Chapter of the ACM
- Vice Chair
Introduction

Windows 10 spying: How to opt out of Microsoft's intrusive new terms of use

Googlers say “F*** you” to NSA, company encrypts internal network
NSA had reverse-engineered many of Google's and Yahoo's inner workings.

REPORT: CIA HAS TRIED FOR YEARS TO BREAK INTO APPLE GEAR

Leave Facebook if you don't want to be spied on, warns EU
Lax Privacy Today

- Businesses value personal data
- Businesses have strong lobby
- Governments tend to paranoia
- Study:
 - Users see growing need for privacy
 - However: they do not act privacy aware (e.g. more social network activities)
Drivers of Privacy Protection

- Standards
- Business model
- Law
- Fear
- Education
- Users

Businesses & Government

Non-technical privacy protection

Technical privacy protection
Privacy Protection

- **Non-Technical**
 - Data avoidance, data minimization, anonymization, special roles in companies (privacy officers)...
 - Often accompanied by technical privacy protection

- **Technical**
 - Uses IT security means
 - Encryption, authentication, …

- Technical privacy protection often presented as silver bullet, especially on user side
 ➔ True???
Effectiveness of IT Security Means

- Many sources on IT security incidents
- Focus on special aspects of IT security
- Surprisingly hard to compare figures (timescale, metrics, approach,...)

Available sources of information:
- Academia (e.g. Georgia Tech)
- Governments (e.g. BSI, UK-Cert)
- Security suppliers (e.g. Symantec, Kaspersky, McAfee)
- Activists (e.g. Hackmageddon)
- Personal communication (e.g. ACM IT Security Live)
- Personal observation (e.g. B.Hive Honeypot)
- Whistleblowers (e.g. Snowden)

Be careful: all sources have a bias
Attack Numbers in 2014 (Latest Numbers)

- Malware (viruses, worms, ...) can be used to bypass security

- New malware pieces in 2014 (million)
 - 317 (Symantec)
 - 155 (McAfee)
 - 80 (BSI - only Windows)

- McAfee: Number of new malware per quarter is increasing:
New Attack Quality in 2014

- McAfee: serious attacks on cryptography (esp. SSL/TLS) in last year
 - E.g. Heartbleed attack allows to wiretap encrypted communication with servers with little effort

- BSI: detected attacks by intelligence agencies on German infrastructure in business, research, and public administration

- BSI: 2014: > 1 million infections a month in Germany

- EU Study: 47% of users discovered malware
Attack targets

- BSI: Number of critical vulnerabilities in standard IT product remains high, for 13 products:
Defense

- Symantec: average time to patch top 5 zero-days:
 - 2013: 4 days
 - 2014: 59 days

- Symantec: total days of exposure for top 5 zero-days:
 - 2013: 19 days
 - 2014: 295 days

- McAfee: most vulnerable high-traffic websites were quickly patched, many low-traffic sites and IP-enabled devices remain vulnerable (Heartbleed)

- Heartbleed study: 43% of admins tried to fix vulnerability, only 14% succeeded
Defense

- ENISA: Over 50% of malware undetected by antivirus products

- McAfee: Multiple Android applications fail to properly validate SSL certificates (allows wiretapping)
 - 18 apps from Top 25 downloaded mobile apps still vulnerable months after notification (!!!)
 - Leak account data of third party services (social networks, cloud, ...)

- Kaspersky: Analysis of home appliances, found a large number of vulnerabilities
To sum it up

- Huge increase in number of attacks
- Software quality (security) does not improve
- Software developers have problems in providing patches in a reasonable time or do not provide patches at all
- Service providers have problems proving secure services or do not care about security
- Common defense means becoming more and more useless

Effectiveness of security means not given
Areas for Improvement

- Software and service quality
- Trustworthiness of software
- Diversity for critical software components
- Use of standard IT in new domains
- Security and privacy education
Action Item: Software and Service Quality

- Software quality must be improved
 - Should target for zero vulnerabilities
 - Should target for attack resilient systems
 - Should over-engineer security
 ➔ current risk-based approach may be wrong

- Usability of security means must be improved
 - Build usable software
 - Security by default
 - Automate: auto-update, …

- Incident management must be improved
 - Software Developers: target for a very short time and good quality
 - Admins: detect problems fast, take countermeasures fast

- To improve situation, external pressure may be necessary (e.g. software liability law)
Action Item: Trustworthiness of Software

- Developers and users have problems judging on the trustworthiness of software
 - Many third party components (and many version changes)
 - Hard to verify OS and hardware

- Governments suspected to force developers to insert backdoors/vulnerabilities for surveillance (e.g. USA)

- German or European hardware platform and OS is desirable

- First steps: IT security made in Germany
 (However: limited approach)
Action Item: Diversity for Critical Software Components

- Too little diversity in critical (=widely used) components (e.g. OpenSSL library)

- Obviously: many eyes looking on these components did not succeed in avoiding vulnerabilities

- Forking existing Open Source projects could not be the solution
Action Item: Use of Standard IT in new Domains

- Computer Science, standard IT, and connection to the Internet coming to new domains
 - Connected Car
 - Internet of Things
 - Industry 4.0
 - Smart Homes
 - Smart TVs
 - ...

- Infects domains with new security problems
 - Often out of expertise of developers of these domains
 - Observations:
 - Domain experts often naive in considering risks
 - Computer scientists often ignorant to domain specific problems
Action Item: Security and Privacy Education

- Education of software developers helps to avoid vulnerabilities
 - Example: OWASP
 - Decline of SQL Injection and CSRF

- Security and privacy courses should be mandatory in CS education

- Teach
 - respect for security problems (baseline: know when to ask a security expert)
 - understanding of security problems, not recipes for security solutions
 - limitations of security means (e.g. certification)
 - importance of privacy
Thank you for your Attention

Hope [hop] n. a positive outlook in an emotional state or circumstance