Hypothalamic Dysfunction in Obesity

Licio A. Velloso
University of Campinas
Brazil
Global Life Expectancy
-10,000 BCE - 2003

Source: Indur M. Goklany, "The Improving State of our World." Washington, DC: Cato Institute, 2007. 36. Life expectancy is believed to have been 20-30 years prior to 1820. Age 25 is selected as an average.
Causes of Increased Life Expectancy

• Machines – Changes in the agriculture production model
• Industrialized foods – reduced production costs
• Industrialized foods – increased energy density
• Migration from physical to intellectual labor
• Sedentary lifestyle
Global Life Expectancy
-10,000 BCE - 2003

Source: Indur M. Goklany. "The Improving State of our World." Washington, DC: Cato Institute, 2007. 36. Life expectancy is believed to have been 20-30 years prior to 1820. Age 25 is selected as an average.
Life Expectancy at Birth by Region, 1950-2050.

Obesity

- Diabetes
- Hypertension
- Atherosclerosis
- Cancer
- Bone and Joint disease
1950`s
Anatomo-physiological studies

1994
Leptin identification

1996-1998
Leptin resistance

Schwartz Nat Med 2: 589, 1996
Hypothalamic resistance to leptin

- Increased Caloric Intake
- Reduced Energy Expenditure

- Frederich/Flier *Nat Med* 1: 1311, 1995
- Schwartz *Diabetes* 45: 531, 1996
Consumption of a Fat-Rich Diet Activates a Proinflammatory Response and Induces Insulin Resistance in the Hypothalamus

Cláudio T. De Souza,* Eliana P. Araujo, Silvana Bordin, Rika Ashimine, Ricardo L. Zollner, Antonio C. Boschero, Mário J. A. Saad, and Lício A. Velloso

Departments of Internal Medicine (C.T.D.S., E.P.A., R.A., R.L.Z., M.J.A.S., L.A.V.) and Physiology and Biophysics (A.C.B.), State University of Campinas, 13084-970 Campinas-SP; and Department of Physiology and Biophysics (S.B.), University of São Paulo, 05508-900 São Paulo-SP, Brazil

Fat-rich diet

\[\text{TNF-}\alpha, \text{IL-1}\beta \]

Hypothalamic resistance to leptin and insulin

NFkB

JNK
Saturated Fatty Acids Produce an Inflammatory Response Predominantly through the Activation of TLR4 Signaling in Hypothalamus: Implications for the Pathogenesis of Obesity

Marciane Milanski, Giovanna Degasperi, Andressa Coope, Joseane Morari, Raphael Denis, Dennys E. Cintra, Daniela M. L. Tsukumo, Gabriel Anhe, Maria E. Amaral, Hilton K. Takahashi, Rui Carì, Helena C. Oliveira, José B. C. Carvalheira, Silvana Bordin, Mário J. Saad, and Lício A. Velloso

Departments of Internal Medicine and Physiology and Biophysics, Faculty of Medical Sciences, University of Campinas, 13083-970 Campinas, São Paulo, Brazil, and Department of Physiology and Biophysics, University of São Paulo, 05508-900 São Paulo, Brazil

Hypothalamic resistance to leptin and insulin - Obesity

Palmitate 16:0
Stearate 18:0
Arachidate 20:0

TLR4, Microglia

Citokines
• TNFα
• IL1β
• IL6
Microglia activation under HFD

Saline

LPS (1mg/Kg – 2hr)

Chow

HFD 6w

Coope, Myers Jr., Velloso, Unpublished
High-Fat Diet Induces Apoptosis of Hypothalamic Neurons

Juliana C. Moraes¹, Andressa Coope¹, Joseane Morari¹, Dennys E. Cintra¹, Erika A. Roman¹, José R. Pauli¹, Talita Romanatto¹, José B. Carvalheira¹, Alexandre L. R. Oliveira², Mario J. Saad¹, Licio A. Velloso¹*

¹ Department of Internal Medicine, University of Campinas, Campinas, Brazil, 2 Department of Anatomy, University of Campinas, Campinas, Brazil

A

B

C

D

E

F

% of control

0
10
20
30
40
50
60
70
80
90
100
110
120

CT

HF

*
Environment + Genetics = Obesity

Palmitic 16:0
Stearic 18:0
Arachidic 20:0

TLR4, microglia

Citokines
• TNFα
• IL1β
• IL6

Resistance
• Leptin
• Insulin

Apoptosis Neurons

De Souza, Endocrinology 2005
Zhang, Cell 2008
Ozcan, Cell Metab 2009
Milanski, J Neurosci 2009
Moraes, PLoS One 2009
Benoit, JCI 2009
Romanatto, JBC 2009
Horvath, PNAS 2010
Arruda, Endocrinology 2011
Thaler, JCI 2012
Li, Nat Cell Biol 2012
Inflammatory

Anti-inflammatory
Neurogenesis
Neurogenesis in the hypothalamus
Partial Reversibility of Hypothalamic Dysfunction and Changes in Brain Activity After Body Mass Reduction in Obese Subjects

Simone van de Sande-Lee, 1 Fabrício R.S. Pereira, 2 Dennys E. Cintra, 1,3 Paula T. Fernandes, 2 Adilson R. Cardoso, 4 Célia R. Garlipp, 5 Eliton A. Chaim, 6 Jose C. Pareja, 6 Bruno Geloneze, 7 Li Min Li, 2 Fernando Cendes, 2 and Licio A. Velloso 1

TCA – Temporal clustering analysis: Analyzes neuronal activity on a given region during a certain time-frame

11 Women; 2 Men

Body mass = 103±11 Kg
BMI = 39 ± 1
Obesity is associated with hypothalamic injury in rodents and humans

Gliosis - sign of inflammation
Conclusions

• Inflammation and dysfunction of the hypothalamus are important features of obesity
• Saturated fats present in the diet have a dramatic damaging effect on neurons of the hypothalamus
• Unsaturated fats reduce inflammation and promote neurogenesis in the hypothalamus
• Neuroimaging methods are non-invasive approaches that may provide advance in the diagnosis and follow-up of patients with obesity related diseases
Thank you!

Collaborations
Mario Saad, University of Campinas, Brazil
Jose B. Carvalheira, University of Campinas, Brazil
Antonio Boschero, University of Campinas, Brazil
Everardo Carneiro, University of Campinas, Brazil
Aníbal Vercesi, University of Campinas, Brazil
Helena C. Oliveira, University of Campinas, Brazil
Hernandes F. Carvalho, University of Campinas, Brazil
Alicia Kowoltoski, University of São Paulo, Brazil
Bruno Geloneze, University of Campinas, Brazil
Fernanda De Felice, F. U. Rio de Janeiro, Brazil
Decio Eizirk, Free University of Brussels, Belgium
Miriam Cnop, Free University of Brussels, Belgium
Franco Folli, University of San Antonio, Texas
Michael Schwartz, Washington University, Seattle
Martin Myers Jr, University of Michigan, Ann Arbor

Grants
São Paulo Research Foundation
CNPq
CAPES