

Some tribological issues on flex-fuel engines

Dr. Eduardo Tomanik - MAHLE Metal Leve SA

FAPESP FAPESP Workshop on Ethanol Based Engines for TransportationBiodiversidade & Química Oct 4th - FAPESP - São Paulo

Flex fuel engines – Some issues (1/3)

Flex fuel engines – Some issues (2/3)

- Ethanol lower lubricity
- Fuel dilution on cold start
- PCP is higher and closer to TDC

Bearing corrosion

Bearing corrosion after ethanol usage with a non-appropriated lube oil, Flex-Fuel engine. *MAHLE Performance magazine, 2009*

Piston ring spalling

Ferrarese et al. Piston Ring Tribological Challenges on the Next Generation of Flex-fuel Engines – SAE 2010-01-1529 SAE Int. J. Engines, Vol. 3, Issue 2

Flex fuel engines – Some issues (3/3)

ATAQUE ÁCIDO

A explicação da VW para o desgaste prematuro b É normal, na fase fria,

Fuel dilution on lube

pelo desaerador do cárter e volta à câmara de combustão guando o motor chega à temperatura de serviço (70 °C). Mas, se o motor não chega a aquecer, o combustivel continua no cárter - sobretudo o álcool, de evaporação mais difícil que a gasolina. Ácidos orgânicos presentes nesse álcool não queimado atacam o óleo. O novo óleo de primeiro enchimento é menos resistente ao ataque ácido que o antigo. O motor 1.0 resiste menos que o 1.6 por ter menos 5leo. Seu cárter é 0,7 litro menor.

4 Rodas, Nov 2009

À medida que não consegue mais neutralizar os ataques químicos, o óleo vai ficando contaminado. Perde suas características originais, como a capacidade de envolver as peças do motor com uma camada protetora.

Valve Issues

Gel in the fuel pump

Cordeiro; Yoshino – SAE 2011-36-0217 Awarded as congress best national paper

Europe 2011: "Carmakers rethink sustainability approach amid E10 fuel fiasco"

International Research on Ethanol issues

Ethanol dilution on Lube

Schwarze et al. "Effect of Ethanol Fuel E85 on Lube Degradation and Wear in SI Engines" MTZ 04/2010

Ethanol effects on Lube and Bearings

D. Schwäbisch et al. "The Effect of Ethanol Fuels on Lubricant and Engine Performance", ATZ

MTZ Jun/2012

Light Vehicles Brazilian Market Trends (2014-2015)

R&D Consortium TriboFlex Tribological Challenges on Flex-Fuel Engines

Objective: Structured knowledge on tribology, especially in the modelling and experimental analysis of:

- ring/lube/bore
- valve/interface/ valve seat

Partners: USP (Poli/LFS), UNICAMP, UFABC Petrobras, MAHLE, Fiat, VW, Renault

UNICAMP

R&D Consortium TriboFlex Tribological Challenges on Flex-Fuel Engines

2 Main engine tribosystems were choosen:

Others can be investigated if more partners/resources appear

R&D Consortium TriboFlex Sub-Projects

00- Tribological Characterization of flex-fuel engine components

0.01 – Characterization of the mechanisms of wear and of the component surfaces.

01- Ring-Lube-Bore Tribo system

- 1.01 Wear mechanisms on bore as function of its properties.
- 1.02 Physic Chemical interaction of oxides and lube film.
- 1.03 Study of the variation of lubricity from engine use degraded oils on the ring materials.
- 1.04 Low friction films for piston rings.

02- Valve-interfacial media-valve seat tribology

- 2.01 Topography and tribological performance of valves.
- 2.02 Influence of temperature and speed on the disk-plate tests.
- 2.03 A bench test reproducing the environment found on flex-fuel engines.
- 2.04 Tribological performance of metal and ceramic materials for valves.

03- Modeling of materials and loadings

3.01 – Modeling of materials and/or films to support the study of materials under the engine thermal /mechanical loads.

3.02 – Modeling study of the lubrication in the ring/bore to investigate the friction mechanisms.

04 – Formation of specialized Human resources

Conclusions

Ethanol fuel brings both advantages and disadvantages in terms of combustion and tribology. So far, engines are mostly adapted from gasoline engines, not ethanol optimized.

More concentrated efforts on R&D are needed to fully explore the ethanol potential as engine fuel.

Better tribological understanding may also bring friction/fuel reductions.

Thanks for the attention

eduardo.tomanik@br.mahle.com