

FAPESP BIOENERGY RESEARCH PROGRAM – BIOEN

International Workshop about the Ethanol Combustion Engines,

The Bioethanol for Sustainable Transportation Project - Results from Brazil

José Roberto Moreira

National Reference Center on Biomass CENBIO Institute of Electrotechnology and Energy – University of São Paulo

FAPESP AUDITORIO São Paulo - Brazil, October <u>04</u>, <u>2012</u>

FAPESP
FAPESP Workshop on Ethanol Based Engines for
TransportationBiodiversidade & Química
Oct 4th - FAPESP - São Paulo

CONTENT

- Bioethanol for Sustainable
 Transportation BEST project description
 Technical and economic results from
- Brazilian experiment
- 3) Economic barrier for ethanol –How to remove
- 4) Conclusions

BEST Project

- □ BEST Project aims to promote the ethanol usage, replacing diesel, in public urban transport in Brazil and worldwide;
- ☐ Beyond São Paulo, the pioneer city in America, eight cities in Europe and Asia take part in the project;
- ☐ The project is an European Union initiative, and it is coordinated by the Stockholm City Hall.

Karolinska sil

Review

1985 - Tests started in Sweden.

1990 to 2007 - 600 operational buses

Programa ECOFROTA

Marcelo C. Branco

Changing the Energy Profile

✓ Diesel

- ✓ Biodiesel
- ✓ Ethanol
- ✓ Diesel from sugar cane

- ✓ Trolleybus
- ✓ Hybrid
- ✓ Electric
- ✓ Fuel cell bus

Biodiesel

- B20 diesel S50 (50 ppm of S) + 20% biodiesel;
- 1200 busses Operated by VIP + 800 up to end of 2012
- Distribution logistics Very favourable;
- Product already available in the market and no vehicle retrofit required
- •22% PM and 20% CO2 reduction

Troleybus

- Present fleet 190 busses;
- 64 new busses to be added soon;
- Replacement of the old 140 busses forecasted by end of 2012
- Tecnology well established and used in São Paulo;
- Zero CO2 emission

Ethanol

- Tecnology from Scania;
- 60 Busses in operation (Metropolitana / TUPI)
- 90% PM and 64% NOx reduction;
- 95% CO2 emission reduction;
- Ethanol + 5% additive.

Diesel da Cana de Açúcar

- 160 busses Operated by: Viação Sta. Brígida;
- Diesel S50 + 10% diesel from sugar cane;
- No engine retrofit required;
- Same consumption and performance

Less opacity and less PM

The City of Sao Paulo Receives the First Bus Fleet of Diesel Engine Busses Running on Ethanol May 25th, 2011

26 de maio de 2011 • 21h53 • atualizado às 21h56

60 busses already sold 10 busses in operation by May 27, 2011 50 busses in operation by June 30, 2011

Charactheristics of Viação Metropolitana ethanol fed busses operating routes.

NACIONAL A EM BIOMASSA Line	6358-10	509M-10	577T-10	
Itinerary	Jd Luso-T Bandeira	Jd Miriam-T Princ Isabel	Jd Miriam–V Gomes	
Total fleet	13	15	40	
Ethanol fleet	9	9	30	
	Av. Cupecê	Av. Cupecê	Av. Cupecê	
	Av. Ver José Diniz	Av. Ver José Diniz	Av. Jabaquara	
Main routes	Av. Ibirapuera	Av. Ibirapuera	Av. Paulista	
	Av. Nove de Julho	Av. Vinte e Três de Maio	Av. Rebouças	
Km month (travelled by the fleet in the line)	80,402	98,707	202,998	
IPK¹	3.07	3.00	3.93 2.00	
Diesel average efficiency	2.34	2.16		
Ethanol average efficiency	(52%) 1.208	(56%) 1.200	(48%) 0.960	

C E N B LO

COSTS

CENTRO NACIO											
DE REFERÊNCIA EM BI	DIESEL B20 ETANOL AMD10 TROLEIBUS TROLEIBUS HIBI										
						+ INFRA					
	0,97	1,15	1,80	1,42	0,90	0,90	0,63				

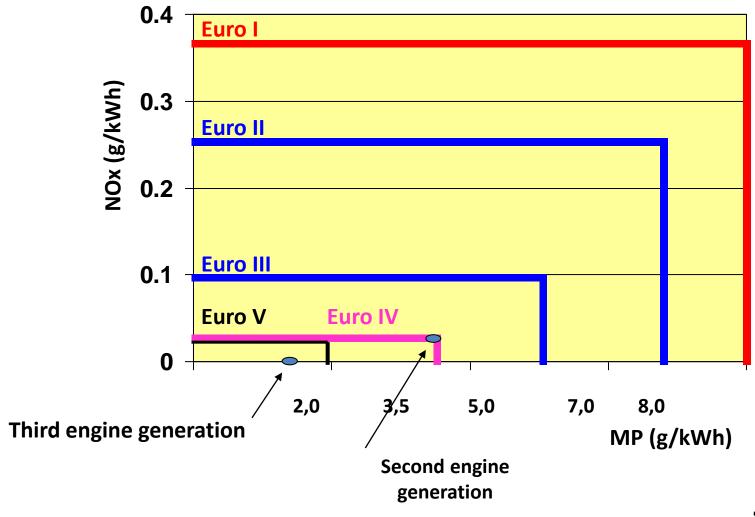
TECNOLOGIA R\$ / km									
DIESEL B20 ETANOL AMD10 TROLEIBUS TROLEIBUS HIBRIDO									
	+ INFRA								
5,40 5,60 6,50 5,80 6,20 7,40 6,90									

EXPENSES

		2011		2012 até mar/12				
Combustível	Litros	Valor Compra R\$	Reembolso SMT - R\$	Litros	Valor R\$	Reembolso SMT - R\$		
B20	43.720.002	87.419.679	14.880.328	13.205.000	27.643.849	5.462.305		
Etanol	1.588.000	3.622.457	272.519	795.000	1.803.310	132.219		
Amyris	205.000	527.138	162.483	955.000	2.459.662	764.729		
Total	45.513.002	91.569.274	15.315.330	14.955.000	31.906.820	6.359.253		

TOTAL FLEET PROFILE

ECOFROTA


	B20	ETHANOL	AMD10	DUALFUEL	HIBRIDO	B20+AMD10	TROLEBUS	% ECOFROTA	% ECOFROTA + B5
2011	1200	60	160				190 (20)	9,5	100
2012	1415	105	469	293	100	104	190 (140)	16,7	100

EMISSIONS

	2011	2012
Emission reduction (%)	6.3	9.5
CO2 reduction (%)	6.7	9.2
CO2 reduction (t/month)	7,835	10,735

Emission Limits for diesel engines

Ethanol engine contribution to reduce pollutants

Emissions reductions in comparison to diesel

(CONAMA 5)

CO: - 92% MP: - 93%

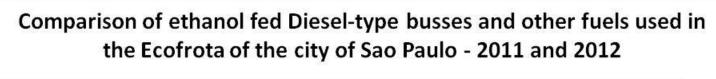

HC: - 87% NOx: - 52%

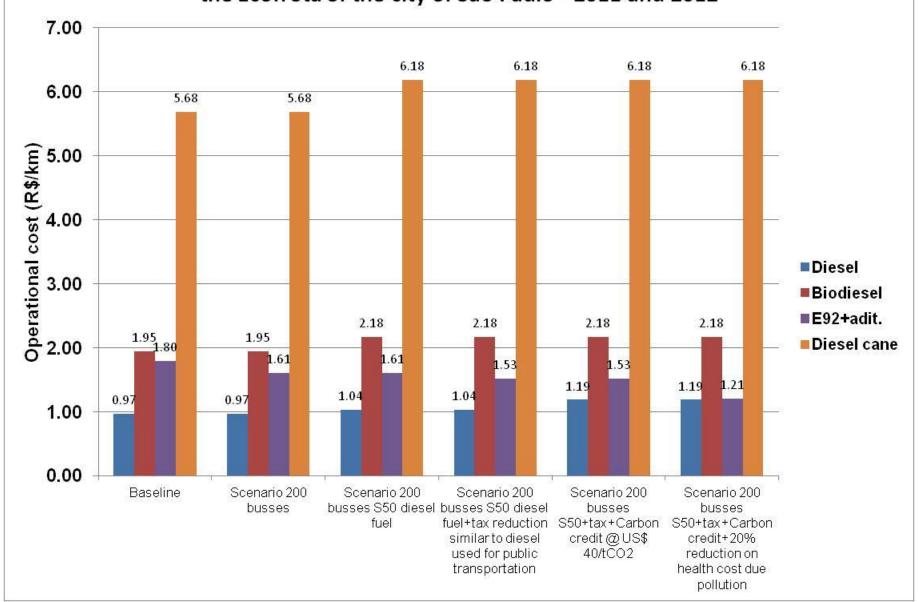
SOx: ~ 100% CO₂: ~ 100%

	Regulated emissions limit for heavy diesel vehicles according with the several historical PROCONVE phase (g/kWh) (CONAMA) Sulfur									
PROCONVE	EURO	ne severa CO	al histo HC	orical PR NOx	ROCONVE p PM	phase (g/kV Period	(CONAMA) Legislagion	Sulfur Content		
Phase I (P1)	NA	14.00*	3.50*	18.00*	-	1989 a 1993	Res. 18/86	-		
Phase II (P2)	Euro 0	11.20	2.45	14.40	0.60	1994 a 1995	Res. 83/93	3.000 a 10.000 ppm		
Phase III (P3)	Euro 1	4.90	1.23	9.00	0.40 ou 0.70¹	1996 a 1999	Res. 08/93	3.000 a 10.000 ppm		
Phase IV (P4)	Euro 2	4.00	1,.0	7.00	0.15	2000 a 2005	Res. 08/93	3.000 a 10.000 ppm		
Phase V (P5)	Euro 3	2.10	0.66	5.00	0.10 ou 0.13 ²	2006 a 2008	Res. 315/02	500 a 2.000 ppm		
Phase VI (P6)	Euro 4	1.50	0.46	3.50	0.02	2009 a 2012³	Res. 315/02	50 ppm		
Phase VI I (P7)	Euro 5	1.50	0.46	2.00	0.02	2012	Res. 403/08	10 ppm		

Figure 2.6-10. Results for Sugarcane Ethanol by Lifecycle Stage With and without residue collection and CBI

Impacts on health due PM and CO in the city of São Paulo


Reduction in hospitalization	4.588 person/yr
Redução in young population mortality	745 person/yr
Reduction in expenses associated with dieseases and mortality	US\$ 146.5 million/yr


SOURCE; Study from Medical University of USP

Fuel Costs for Ecofleet

	Diesel	Biodiesel	E92+adit.	Diesel cane
Scenario		Operation	nal cost (R	\$/km)
Baseline	0.97	1.95	1.80	5.68
200 busses	0.97	1.95	1.61	5.68
200 busses S50 diesel fuel	1.04	2.18	1.61	6.18
200 busses S50 diesel fuel+tax reduction similar to diesel used for public transportation	1.04	2.18	1.53	6.18
Scenario 200 busses S50+tax+Carbon credit @ US\$ 40/tCO2	1.19	2.18	1.53	6.18
200 busses S50+tax+Carbon credit+20% reduction on health cost due pollution	1.19	2.18	1.21	6.18

Advantages with the use of Ethanol in diesel type engines

Ethanol is renewable, clean and biodegradable; Reduction on local air pollution: 90% for particulate matter and for NOx; ☐ Fulfills EURO 5 and EEV — Enhanced Environmental Vehicle; Zero sulfur content, thus no impact on acid rain; 80% or more reduction on GHG emissions; Creates employments on rural areas; Is almost commercially feasible; Is immediately available in large amounts; Is fully compatible with existent liquid fuel distribution system; Is a national product.

Today it is already less costly than biodiesel

THANK YOU VERY MUCH

QUESTIONS?

rmoreira69@hotmail.com