How to Write for and Get Published in Scientific Journals

Daniel McGowan, PhD
Science Director
Edanz Group
Fundação de Amparo à Pesquisa do Estado de São Paulo
16 March 2012
A little about me...
Presentation

- **Section One**: Scientific publishing
- **Section Two**: Before you start...
- **Section Three**: Structuring your manuscript
- **Section Four**: Hints and tips
Section One *Scientific publishing*

- Why publish?
- Publishing in English
- The publishing timeline
- Peer review
Why publish?

Nature is complex
Why publish?

We use complex technologies and methods to understand it...
Why publish?

...and the science is often necessarily complex
Why publish? To exchange ideas globally!

ABSTRACT
We present a detailed examination of the brown dwarf multiples 2MASS J08503593+1057156 and 2MASS J17281150+3948593. We derive combined-light photometry that straddles the L dwarf/T dwarf transition. Resolved photometry from Hubble Space Telescope/NICMOS show opposite trends in the relative colors of the components, with the secondary of 2MASS J0850+1057 being redder than its primary, while that of 2MASS J1728+3948 is bluer. We determine near-infrared component types by matching combined-light, near-infrared spectral data to binary templates, with component spectra scaled to resolved NICMOS and K_s photometry. Combinations of L7 + L6 for 2MASS J0850+1057 and L5 + L6.5 for 2MASS J1728+3948 are inferred. Remarkably, the primary of 2MASS J0850+1057 appears to have a later-type classification compared to its secondary, despite being 0.8–1.2 mag brighter in the near-infrared, while the primary of 2MASS J1728+3948 is unusually early for its combined-light optical classification. Comparison to absolute magnitude/spectral type trends also distinguishes these components, with 2MASS J0850+1057A being \approx1 mag brighter and 2MASS J1728+3948A \approx0.5 mag fainter than equivalently-classified field counterparts. We deduce that thick condensate clouds are likely responsible for the unusual properties of 2MASS J1728+3948A, while 2MASS J0850+1057A is either an inflated young brown dwarf or a tight unresolved binary, making it potentially part of a wide, low-mass, hierarchical quintuple system.

Subject headings: binaries: visual — stars: individual (2MASS J08503593+1057156, 2MASS J17281150+3948593) — stars: low mass, brown dwarfs
Why publish?

New findings of relevance published — Hypothesis — Design research — Perform research — Draw conclusions — New validated method published
Why publish in English?

- English is the international language of science
- Other scientists want to hear from Brazilian researchers!
- Allows you to become an effective science communicator
- International reputation enabling collaborations and work opportunities
Increased competition

- Relative growth from 100% baseline in 1990
Peer review

- Exists to ensure that your paper is as *scientifically robust AND complete* as possible before joining the ‘collective knowledge’ as part of the literature
- An opportunity to *improve* your contribution
- So discoveries get correct accrediting
Peer review improves your manuscript

- Few papers are accepted without revision
- Rejection and revision are integral to the peer review process
What do journal editors and reviewers want?

- Is the manuscript sufficiently novel?
- Is the manuscript of broad enough interest?
What do journal editors want?

Good quality science!

- Will stand up to peer review
- Original research that advances a field in some way
- Interesting to the journal’s readership
- Active research areas
- *Clear and concise English*
Section Two *Before you start* ...

- Read
- Study design
- Select an appropriate journal
- Ethical issues
Reading helps your writing

- Both sides of the brain are essential and work in harmony

- Similarly, reading and writing are connected
The importance of reading

- Ensures the most appropriate research questions are asked
- Ensures the most appropriate methods are used
- Ensures results are interpreted in the appropriate context
- Ensures the most relevant studies are cited
- Helps with identification of suitable target journals
Reading improves your writing

- Read as often as possible
- Discuss with your colleagues
- Assists you with journal selection
- Provides ideas for your next manuscript
Strategies for reading

1. Read Title and Abstract first
2. Self-assess knowledge of topic
3. Read Results or the relevant parts of the Results
4. Read Discussion for interpretation
5. Refer to Introduction and Methods only if necessary
Experimental design *Get it right*

- **CRITICAL**

 What is your hypothesis or research question?

 THE AIM(S) OF YOUR STUDY

- What methods are appropriate?
 - Do you have the relevant resources?

- Identify your controls
Experimental design *Get it right*

- Sample sizes \((n) \) large enough?
- Which statistical test(s)?

When in doubt – talk to a statistician!

- Does your study comply with ALL ethics requirements?
Journal Selection
Choosing a target journal: timing

- The target journal should be chosen:
 - After the results to be published have been obtained (with no new ones coming)
 - After a decision has been made on how high to aim—high, medium or low impact
 - Before writing the manuscript
Choosing a target journal

- Journal selection should be based on an *honest evaluation* of the manuscript
- Compare with the stated *aims and scope* and *impact factor* of potential target journals
Match your manuscript with the journal

- What is the message?
- Who will be interested?
- How significant are your results?
- Where have similar articles been published?

Reading helps your writing

- Both sides of the brain are essential and work in harmony

- Similarly, reading and writing are connected
Factors to consider

- Aims and scope
- Publishing frequency
- Impact factor
- Target audience
- Open access or subscriber
- Prestige
- Cost
- Publication type

Which factor is most important to you?
Evaluating significance: importance

- Specific interest only or of interest to many
- **Affect** many (e.g. new tool)
- Support for (or contradiction of) an **existing theory**
- Substantially improve our understanding of a phenomenon or provide a **new technology or disease treatment**?
Evaluating significance: novelty

- How *new* are my results compared with those already published?

![Diagram showing new findings, incremental advances, and conceptual advances with impact factors.](image)
Evaluating significance: relevance

- Are my findings of relevance only to a **specific geographical region or ethnic population** or do they have implications for other regions and populations?

- High impact factor journals may consider specific findings if they are the **first of their kind** or of **international significance**.
Evaluating significance: appeal

- Is my work in an area of ‘popular appeal’? *E.g.* is it likely to be reported in mainstream or lay scientific media

Examples:
- Optogenetics
- Epigenetics
- Stem cells
- Higgs boson
- Global warming
- Clean tech
Publication ethics

DO NOT...

- Multiple submissions
- Plagiarism
- Improper author contribution
- Data fabrication and falsification
- Improper use of human subjects and animals
- Conflicts of interest
Conflicts of Interest

- Actual **OR** perceived

 “Authors **MUST** disclose interests that might **APPEAR** to affect their ability to present or review data objectively”

- Guidelines

 - Committee on Publication Ethics (COPE)
 - European Association of Science Editors (EASE)
 - Council of Science Editors (CSE)
 - International Committee of Medical Journal Editors (ICMJE)
 - Good publication practice for communicating company sponsored medical research: the GPP2 Guidelines (*BMJ* 2009, **339**:b4330)
Coffee Break
Section Three *Structuring your manuscript*

- You are telling a story

 ![Image](image.png)

 Beginning → **Middle** → **End**

 (Introduction) (Body) (Conclusion)

- **MUST** be easy to read **AND** easy to understand
‘Tell them three times’

- **Introduction/Beginning**
 - **Assertion**
 - ‘tell them what you are going to tell them,’

- **Body/Middle**
 - **Evidence**
 - ‘tell them,’

- **Conclusion/End**
 - **Affirmation**
 - ‘tell them again what you told them’.
Basic manuscript structure

- Expanded IMRaD model
 - Abstract
 - Introduction
 - Methods
 - Results
 - Discussion
 - References

- Assertion
- Evidence
- Affirmation
For maximum clarity and consistency, write your manuscript in this order:

- **Methods**: Write **during** the research
- **Results**: Write **after** selecting your target journal
- **Introduction**
- **Discussion**
- **Title**
- **Abstract**: Write **last**

The ‘write’ order
The importance of your title

- Grabs the reader’s attention
- Convey the main topic
- Be specific and concise
- Avoid jargon, abbreviations and acronyms

Reading helps your writing
- Both sides of the brain are essential and work in harmony
 - Logic
 - Creativity
 - Reading
 - Writing
- Similarly, reading and writing are connected
Abstract **Summarizes your work**

- Concise (100–300 words)
- 1–4 sentences – describe problem(s) addressed
- 1–4 sentences – objectives/hypotheses
- 1–2 sentences – techniques; **AVOID** details
- 1–3 sentences – most important results
- Final sentence – concluding statement

The majority of people will only read this section, it must be able to ‘stand alone’
What question (problem) was studied?

The answer to this question is contained within your Introduction

Beginning → Middle → End
Introduction *Beginning*

- Sufficient background information
 - Puts your work into context
 - Start with a broad background

- Comprehensive literature review

- Cite reviews
Introduction Middle

- **Rationale**
 - The reason(s) for doing this work?
 - Why is it important?
 - Justify your work

- Explain how you tried to address the problem (1–2 sentences)

- **DO NOT** state results from your study
State the methods you plan to use

Clearly and **explicitly** state 1–3 specific hypotheses or objectives of your study
Methods *How did you carry out your work?*

- Subheadings
 - Easier to read
- Past tense
- New methods *must* be described in sufficient detail that they can be reproduced
- Established methods can be referenced
 - Save time and effort
Materials and methods

Materials. Culture media were obtained from Life Technologies (Gaithersburg, MD). Okadaic acid was purchased from Alexis Company (Läufelfingen, Switzerland). Antibodies to MEK1/2 and phosphorylated MAPK were purchased from New England Biolabs (Beverley, MA).

Induction of cell death. Cell death was induced as described previously [15]. Briefly, cell death was induced by adding okadaic acid (0-300 nM, Alexis Co.) after washing slice cultures in serum-free medium.

Light and electron microscopy. Cultures were fixed in 2.5% glutaraldehyde and 1% formaldehyde, treated with 1% OsO4 in 0.1 M phosphate buffer, pH 7.4, dehydrated in a graded series of ethanol and propylene oxide, and flat-embedded in an epoxy resin (Durcupan ACM, Fluka, Neu-Ulm, Germany). Semi-thin sections were stained with toluidine blue, and ultra-thin sections were stained with 1% uranyl acetate for 20 min and 1% lead citrate for 2 min.

Statistics. For statistical analysis, 2-tailed Student’s t-test was used to assess the significance of mean differences. Differences were considered significant at a P-value of 0.05 or less.
Results *What did you find?*

- Accurate, brief, clear
- Use subheadings
- Use *past tense* to describe your results
- When referring to figures and tables, use *present tense*
- **DO NOT** explain your results
- **DO NOT** duplicate data among figures, tables and text
Okadaic acid induces death of dentate gyrus neurons selectively.

Hippocampal slice cultures treated with OA (1–300 nM) showed selective cell death of neurons in the dentate gyrus, but neurons in the CA1–3 regions were largely unaffected. Cell death occurred in a time- and dose-dependent manner. Propidium iodide staining of treated slides indicated....

Electron microscopy revealed a number of ultrastructural changes in hippocampal pyramidal neurons, particularly those in the CA3 region, in slices treated with 300 nM OA for 24 h (Fig 3). These changes included slight nuclear aggregations (arrow in Fig 3A), accumulation of mitochondria around nuclei (arrowheads in Fig 3B) and an increased amount of endoplasmic reticulum (Fig 3C). As shown in Figure 4, the nuclei of pyramidal neurons in the CA1 and CA3 regions...

Involvement of MAPK signaling in the effect of OA. Compared with slices treated with medium only and treated slices at 0 h, slices treated with 300 nM OA showed increasing levels of phosphorylated MAPK at 4 h, 8 h, 16 h and 24 h, with no corresponding change in the levels of total MAPK. This increase was prevented in slices that were co-incubated with a protein kinase inhibitor. In addition, the levels of phosphorylated Tau were higher in OA-treated slices than in control slices...
Display items *Tables and figures*

- Present a large amount of data *quickly* and *efficiently*
- Present *most significant* result as a figure or table
- Keep it simple — use separate panels if necessary
- **AVOID** duplication with the text
- Label all parts of your figures
- Legends must be able to ‘stand alone’
Display items *Tables*

Clear concise legend/caption

Table 1. Percentages of cells that were dead as indicated by propidium iodide staining within a single field-of-view (40,000 μm²) using a 40x objective lens in hippocampal slices treated with a variety of concentrations of okadaic acid. Data are means±SD for 20 fields of view per treatment and region.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>CA1</th>
<th>CA2</th>
<th>CA3</th>
<th>DG</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 nM OA (medium only)</td>
<td>1.5±0.7</td>
<td>1.7±0.3</td>
<td>1.2±0.9</td>
<td>1.6±0.4</td>
</tr>
<tr>
<td>10 nM OA</td>
<td>1.6±0.9</td>
<td>1.6±0.4</td>
<td>1.4±1.1</td>
<td>2.5±0.9</td>
</tr>
<tr>
<td>75 nM OA</td>
<td>1.9±1.1</td>
<td>1.9±0.6</td>
<td>2.1±1.2</td>
<td>11.9±2.1</td>
</tr>
<tr>
<td>150 nM OA</td>
<td>1.9±1.3</td>
<td>2.1±0.5</td>
<td>2.5±1.5</td>
<td>19.6±3.3</td>
</tr>
<tr>
<td>300 nM OA</td>
<td>2.1±1.2</td>
<td>2.1±0.5</td>
<td>3.0±1.2</td>
<td>26.7±4.5</td>
</tr>
</tbody>
</table>

OA=okadaic acid; CA1–CA3=the CA1–CA3 regions of the hippocampus; DG=the dentate gyrus of the hippocampus

Data divided into categories for clarity

Abbreviations defined
Multiple panels: sets of related data are shown in a single figure

Clear, ‘stand alone’ legend

Fig. 4 Noise spectra at station AFFS. Acceleration power spectra (in decibels relative to 1 m²/s⁴) are shown for the vertical, north and east components. Individual spectra are shown in red and the average spectra in black. Also shown are the average low and high noise spectra (dotted line) of Peterson (1993)

Complicated data separated into smaller and simpler components

Axes clearly labeled
What do these findings mean?

The answer to this question is in the Discussion.
Discussion *Beginning*

- **AVOID** repeating the results section ❌
- Answer the research question(s) posed
- **Emphasize** the major finding(s) first
- What is your major conclusion, based on the results you have presented?
Discussion *Middle*

- Interpret your results ...
 - Compare with other studies
 - Same or different?
 - Possible reasons why?
- Unexpected results
- Briefly describe any limitations
 - Sample sizes
 - Complementary tests
 - How could experiments be improved?
Discussion *End*

- Restate major conclusion(s)
 - *In summary ... OR In conclusion ...*

- Possible real world applications and implications

- Suggest future work

“Clinical and research priorities include furthering our understanding of the pathogenesis of *M. pneumoniae*-associated CNS disease, development of more reliable serologic assays, and defining the role of quantitative PCR in distinguishing acute infection from asymptomatic carriage and prolonged post-infection shedding”

 – Bitun & Richardson *Curr Infect Dis Rep* 2010, *12*:282-290
References

- **ALWAYS** format your references
- Formatting is required *in text* for citations and for your references section
- Use reference management software

zotero 📚 RefWorks
Section Four *Hints and tips*

- Clear communication
- Language
- Cover letters
- Responding to reviewer comments
Expectations

- Information is easier to interpret and more uniform when placed where most readers expect to find it
- Good writers are aware of these expectations
- Readability
Verb placement

- Readers expect verbs to closely follow subjects

Subject and verb far apart = poor readability
Avoid reader confusion

- Readers can be confused if subject and verb are separated by too much content.

The smallest of the URF's (URFA6L), a 207-nucleotide (nt) reading frame overlapping out of phase the \([\text{NH}_2]\)-terminal portion of the adenosinetriphosphatase (ATPase) subunit 6 gene, has been identified as the animal equivalent of the recently discovered yeast H-ATPase subunit 8 gene.
Avoid reader confusion

The smallest of the URF's is URFA6L, a 207-nucleotide (nt) reading frame overlapping out of phase the [NH₂]-terminal portion of the adenosinetriphosphatase (ATPase) subunit 6 gene; it has been identified as the animal equivalent of the recently discovered yeast H-ATPase subunit 8 gene.

The smallest of the URF's (URFA6L) has been identified as the animal equivalent of the recently discovered yeast H-ATPase subunit 8 gene; URFA6L is a 207-nucleotide (nt) reading frame overlapping out of phase the [NH₂]-terminal portion of the adenosinetriphosphatase (ATPase) subunit 6 gene.

We identified the smallest of the URF's (URFA6L) as the animal equivalent of the recently discovered yeast H-ATPase subunit 8 gene. URFA6L is a ...
Which voice? *Active vs. passive*

- Use the active voice unless your target journal states otherwise

Blood samples were collected from 256 patients. ✗

We collected blood from 256 patients. ✓
Active voice

- Sentences written in the active voice are:
 - SIMPLE
 - DIRECT
 - CLEAR
 - EASY TO READ
Stress position

- Readers focus on information at the end of a sentence.

“Save the best until last”

take-home information
Stress position

The dog sat when her mistress **offered a treat**.

The dog sat when a treat was offered by **her mistress**.

When the mistress offered her a treat, **the dog sat**.

- Readers, without thinking, concentrate on **the end of a sentence**.
Readers expect a sentence/phrase to be a story about whoever shows up first.
- **Linkage and context**

 The family went into the courtyard to see the new puppy. The dog sat when her owner offered a treat. Everyone was so excited they broke into applause. However, as the courtyard was situated right next to my bedroom, the sound woke me from my sleep.
Readability

“only 4% of readers understand a 27-word sentence first time”

- Reader objectives
 - Only need to read once
 - Do not have to read slowly
 - Can understand author logic immediately
Simple is best

- Simple language is best
- Makes your science more relevant
- Minimizes confusion – maximizes understanding
- Science is often complex
 - Use simple language to help more people understand your work
Simple words *Examples*

PREFERRED
more
enough
clear
try
show
try
very

AVOID
additional
adequate
apparent
attempt
demonstrate
endeavor
exceedingly
In order to determine the fractalkine expression in the aorta of ApoE−/− mice and the effect of high-dose aspirin intervention on fractalkine expression and atherosclerotic lesion formation, we studied ...

To determine the fractalkine expression in the aorta of ApoE−/− mice and the effect of high-dose aspirin intervention on fractalkine expression and atherosclerotic lesion formation, we studied ...
Unnecessary words Further examples

PREFERRED

- Because
- First
- Soon
- Four
- Green
- After
- Before
- Usually

AVOID

- For the reason that
- In the first place
- In the not too distant future
- Four in number
- Green color
- Subsequent to
- Prior to
- Except in a very few instances
Common mistakes *Comparisons*

- Frequently made in the *Results* section
- Compare “like” with “like”
- Avoid ambiguity

The tumor excised from the pancreas was compared with the liver.

The tumor excised from the pancreas was compared with *that from the liver.*
Avoiding ambiguity *Comparisons*

- Relative terms, such as more, higher and greater, require a reference for comparison
- Use *than* or *compared with*

Reactions with the new thermal cycler were faster.

Faster than what?

Reactions with the new thermal cycler were faster than *those with the old cycler.*
Help your readers understand

“If you can’t explain something simply, you don’t understand it well.”

– Albert Einstein

- Write to *express NOT* impress
- Consider your audience – their native language may not be English
Online resources

- Paradigm Online Writing Assistant
 http://www.powa.org/

- Springer Exemplar
 http://www.springerexemplar.com/

- Google Scholar
 http://scholar.google.com/

- Purdue Online Writing Lab
 http://owl.english.purdue.edu/owl/
Welcome to the Springer Author Academy, a guide from Springer and Edanz on the basics of writing and publishing a scientific manuscript. You can use the links to the right or below to find advice on specific topics.

Before you begin, it may be useful to remind yourself of why publishing your work is important. You might need to publish in order to graduate, get a job, or advance your career. But first take a moment to think about two of the most important aims of scientists:
Competition for publication space and for editors’ attention is very high

It may not be enough to send a cover letter to a journal editor like this:

Dear Editor-in-Chief,

I am sending you our manuscript entitled “Techniques to detect circoviruses in Indian bird species” by Raye et al. We would like to have the manuscript considered for publication in *Virology Methods Online*.

Please let me know of your decision at your earliest convenience.

Sincerely yours,

Daniel McGowan, PhD
Your cover letter *General rules*

- Address to the editor personally
- State your manuscript title and publication type
- Give a brief background, rationale and description of your results
- Explain the importance of your findings and why they would be of interest to the journal’s target audience
- Provide corresponding author details
Dear Dr Lisberger,

Please find enclosed our manuscript entitled “Amyloid-like inclusions in the brains of Huntington’s disease patients”, by McGowan et al., which we would like to submit for publication as a Research Paper in Neuroscience.

Recent immunohistochemical studies have revealed the presence of neuronal inclusions containing an N-terminal portion of the mutant huntingtin protein and ubiquitin in the brain tissues of Huntington’s disease (HD) patients; however, the role of these inclusions in the disease process has remained unclear. One suspected disease-causing mechanism in Huntington’s disease and other polyglutamine disorders is the potential for the mutant protein to undergo a conformational change to a more stable anti-parallel β-sheet structure...

To confirm if the immunohistochemically observed huntingtin- and ubiquitin-containing inclusions display amyloid features, we performed Congo red staining and both polarizing and confocal microscopy on post-mortem human brain tissues obtained from five HD patients, two AD patients, and two normal controls. Congo red staining revealed a small number of amyloid-like inclusions showing green birefringence by polarized microscopy, in a variety of cortical regions.... detected inclusions observed in parallel sections, suggesting that only a relatively small proportion of inclusions in HD adopt an amyloid-like structure.

We believe our findings would appeal to a broad audience, such as the readership of Neuroscience. As a wide-reaching journal publishing original research on all aspects of neuroscience...

We confirm that this manuscript has not been published elsewhere and is not under consideration by another journal. All authors have approved the manuscript and agree with submission to Neuroscience. We have read and have abided by the statement of ethical standards for manuscripts submitted to Neuroscience. The authors have no conflicts of interest to declare.

Please address all correspondence to....

Recommending reviewers

“... the contact details (including email addresses) of at least four potential peer reviewers for your paper. These should be experts in your field of study, who will be able to provide an objective assessment of the manuscript's quality. Any peer reviewers you suggest should not have recently published with any of the authors of your manuscript and should not be members of the same research institution.”

- **Who ARE these experts?**
- **Read as much as possible!**
- **Know your competitors**
- **Provide a reason for recommending/excluding a reviewer**
- **Editors have the final decision on reviewer choice**
Potential reviewers

- From your reading and references
 - Groups doing similar work, producing similar results
 - Possible collaborators

- Networking
 - Meetings, conferences and congresses
 - People that comment positively

- Aim for younger and mid-level scientists
Peer review

- Very few papers are immediately accepted without need for any revisions.
Reasons for rejection: the science

- Methods
- Research question
- Validations
- Statistics
- Data versus conclusions
Reasons for rejection: the manuscript

- Methods detail
- Citations
- Rationale and aims
- Results format
- Limitations
Reasons for rejection: other

- Inappropriate journal selected: scope, impact, audience
- Inappropriate timing: too early or late
Revision *How to respond*

- Politey respond to *ALL* the reviewers’ comments in a response letter
- Make it easy to see the changes
 - Refer to line and page numbers
 - *Different color font*
 - Highlight the text
Revision *How to respond*

- Conduct the additional experiments suggested
 - If this is impossible, you *MUST* explain why
- You can disagree with reviewers *BUT* provide evidence (cite references)
- Comply with deadlines
Post-referee revisions The response

Dear Dr. _______________: [address the editor by name]

Thank you for your consideration of our manuscript entitled _______________ [insert manuscript title here]. We have reviewed the comments of the reviewers and have thoroughly revised the manuscript. We found the comments helpful, and believe our revised manuscript represents a significant improvement over our initial submission. In response to the reviewers’ suggestions we have [summarize the key changes here]
Post-referee revisions *Point-by-point*

[After the introduction to the response, address *all reviewer points individually*]

Reviewer Comment: *In your analysis of the data you have chosen to use a somewhat obscure fitting function (regression). In my opinion, a simple Gaussian function would have sufficed. Moreover, the results would be more instructive and easier to compare to previous results.*

Response: *We agree with the reviewer’s assessment of the analysis. Our tailored function makes it impossible to fully interpret the data in terms of the prevailing theories. In addition, in its current form it would be difficult to tell that this measurement constitutes a significant improvement over previously reported values. We have redone the analysis using a Gaussian fitting function.*
Post-referee revisions

Disagreement

[Sometimes you will disagree with the reviewer. Keep your response polite and professional]

Reviewer Comment: In your analysis of the data you have chosen to use a somewhat obscure fitting function (regression). In my opinion, a simple Gaussian function would have sufficed. Moreover, the results would be more instructive and easier to compare to previous results.

Response: We agree with the reviewer that a simple Gaussian fit would facilitate comparison with the results of other studies. However, our tailored function allows for the analysis of the data in terms of the Smith model [Smith et al, 1998]. We have added two sentences to the paper (page 3 paragraph 2) to explain the use of this function and Smith’s model.
Edanz Journal Advisor

simplifying publication success

featuring Journal Selector

Journal Selection: Find the journal that’s right for you

The Journal Selector uses cutting-edge semantic technology to help you achieve publication success. Enter in your abstract or a sample text and the Journal Selector will give you a list of journals that publish in related areas. You can then refine your results based on the factors that matter to you, like publication frequency or Impact Factor.

Journal Selector
Simplifying publication success

... Enter the abstract or description of your article to match to relevant journals. Currently matching with 10,000+ scientific journals.

Match only to Journals with Impact Factor

Find matching journals
How to use it

1. Insert English sample text

author’s abstract, short description, key phrases or abstract from similar paper

![Springer Journal Selector beta](image)
2. Filter and refine

revise sample text to refine results

Impact Factor

publication frequency
3. Narrow your options

- match analysis
- basic journal information
- matched previous publications
4. Visit journal websites to make final decision
coming soon at edanzediting.com/JST

follow us on twitter @JournalAdvisor
Obrigado!

Daniel McGowan, PhD
Science Director
Edanz Group

dmcgowan@edanzgroup.com
Any questions?

If you have queries about writing:
read2write@edanzgroup.com
http://edanzediting.com/brazil_march_2012
Edanz Group

English editing for scientists, by scientists

- Expert scientific editors
- Services to raise your chances of acceptance
- Ensuring clear communication of your science
- Rapid completion
Services for acceptance

- Language Editing
- Journal Selection
- Expert Scientific Review
- Abstract Writing
- Cover Letter Writing
- Point-by-Point Response Check
Expert editors in all scientific fields

Dr Stephen Cooke
2006 – PhD Immunology, King’s College, UK
Worked as a post-doctoral fellow for both the Arthritis and Rheumatism Council (ARC) and Cancer Research UK (CRUK)

Dr Conan Fee
1989 – PhD Chemical & Process Engineering, University of Canterbury, NZ
Director of Biomolecular Interactions Centre at the University of Canterbury; has published over 160 journal articles, book chapters, conference papers, and patents

Dr Jennifer Smith
1999 – PhD Botany, University of Otago, NZ
Experienced peer reviewer for functional plant biology, and enzyme and microbial technology

Dr Alison Sherwin
1992 – PhD Biochemistry, University of Kent at Canterbury, UK
Has edited over 3,000 manuscripts in the Health and Life Sciences for Japanese and Chinese authors

Dr Kristen Demarest
2000 – PhD Neurobiology and Behavior, SUNY, USA
Currently staff scientist at Scripps Research Institute

Dr Natasha Lundin
2007 – PhD Chemistry, University of Otago, NZ
Cover article author in Angewandte Chemie

Dr Andrew Gorman
2001 – PhD Geophysics, University of British Columbia, CA
Lecturer at the Geology Department, University of Otago

Dr Brett Kraabel
1995 – PhD Physics, University of California Santa Barbara, USA
Specialist in condensed matter physics, optics and materials science