ASTERALES composition and COMPOSITAE diversification

José Rubens Pirani
Departamento de Botânica
Universidade de São Paulo

South American Compositae Meeting
FAPESP - 5-7th December 2011
ASTERACEAE
or
COMPOSITAE

c. 1.700 genera

c. 24.000 spp.

- the largest families of flowering plants.

- strongly supported as a monophyletic group by morphological, chemical, and molecular characters.

- strong evidence for its nesting in the clade ASTERALES s.l., together with some ten other families according to APG-III (2009).

- surpassed all other families in the order, and lead to the conquest of a cosmopolitan distribution with a wide range of life forms in practically almost all biomes on Earth.
COMPOSITAE in ASTERALES s.l.

- a general panel of the Asterales

- synapomorphies of the clade Compositae-Calyceraceae as sister-group to the Goodeniaceae.

- the evolutive success of the Compositae.
18S rDNA, $rbcL$, $atpB$, $atp1$, $matR$ (+ 61 molecular markers of 45 taxa)

ASTERALES
in the
ASTERIDS CAMPANULULIDS
e.g. acetylenes, lactones; inferior ovary, early sympetalal
Late Sympetaly
Asterids LAMIIDS

Anchusa officinalis
Boraginaceae

Leins 2000
EARLY SYMPETALY
ASTERIDS
CAMPANULIDS

Calendula officinalis, Compositae

Leins 2000
APIALES

DIPSACALES

ASTERIDS

CAMPANULULIDS

pseudanthia

Plant systematics

Eryngium

Trachymene

Dipsacus

Cynara

Dasyphyllum

Calea

Leonardo Ré Jorge

Fernando Costa
Monophyly of the order strongly supported by \textit{rbcL}, \textit{ndhF}, and \textit{atpB} sequences + mitochondrial \textit{rpl2} gene lost.

\textbf{route I secoiridoids, oligo- or polyfructosans, including \textit{inulin}, with isokestose linkages [starch generally wanting]}
Fructans may stabilize cell membranes under drought and/or freezing conditions (Livingston III et al. 2009)

\textbf{petals valvate}

\textbf{pollen grains tricellular}

\textbf{11 families 1,649 genera 25,790 species (10\% of the angiospermas)}
Each of the 12 major families of Asterales is labeled.

Maximum-likelihood phylogeny for 4954 species
MEGA-PHYLOGENY method

(Tank & Donoghue 2010)

DNA sequences of 5 genes: rbcL, matK, trnL-F, ndhF, ITS
ASTERALES phylogeny

Rousseaceae - 6
Campanulaceae – 2,400 spp
Pentaphragmataceae - 30
Alseuosmiaceae - 10
Phellinaceae - 11
Argophyllaceae - 20
Stylidiaceae - 245
Menyanthaceae - 60
Goodeniaceae - 440
Calyceraceae - 60

COMPOSITAE (ASTERACEAE)

All branches have Bayesian position probabilities ≥ 0.95 and ML bootstrap $\geq 75%$

10 chloroplast gene analysis - Tank & Donoghue 2010

In South America

CORE ASTERALES
ASTERALES
CAMPANULACEAE

Hippobroma

Centropogon

I. Cordeiro

secondary pollen presentation

Centropogon

Plant systematics

pump mechanism in Lobelioideae

Leins & Erbar 2010

J.R. Pirani

I. Cordeiro

I. Cordeiro

Lobelia
ASTERALES

- secondary pollen presentation

 [protandry, anthers connivent at dehiscence, the style elongates after pollen deposition]

- stigma dry, ± papillate

- calyx persistent in fruit

- ovule 1
ASTERALES

GOODENIACEAE 440 spp.

Scaevola plumieri
INKBERRY

São Paulo, Brazil

Florida - USA
GOODENIACEAE

Stylar cup mechanism

ASTERALES

Selliera radicans

style curved, with apical hairy pollen-collecting indusium and stylar cup

Leins & Erbar 1989

Leins & Erbar 2010
CALYCERACEAE 60 spp.

Apical ovule, filaments connate, anthers free

involucrate CAPITULUM made of cymose units

A-D. Acicarpha tribuloides
H-I. Boopsis itatiaiae

E-G. Acicarpha spathulata
J-L. Boopsis bupleuroides

Acicarpha spathulata
Brazil

Magenta & Pirani 2002
Secondary pollen presentation
Deposition mechanism

Stigma minutely capitate, pollen deposited on its top

deposition mechanism in Calyceraceae

Leins & Erbar 2010
ASTERALES

ASTERACEAE ou COMPOSITAE

- ovule 1, basal

- involucrate CAPITULA

- synanthery

- sesquiterpene lactones
COMPOSITAE

Cichorium

Liatris

Plant systematics
COMPOSITAE - Secondary pollen presentation

Brushing mechanism Pump mechanism

a

brushing mechanism in Asteraceae

b

pump mechanism in Asteraceae

Senecio Achillea Grindellia

Leins & Erbar 2010
COMPOSITAE - Capitulum development

Mutisia

Xerxes

Calea

Fernando Costa

Eduardo L.H. Giehl

Gustavo Shimizu
CAPITULUM (head): centripetal development

Hess 1983
Asterales COMPOSITAE - CAPITULUM

Pollination: generalists

Helianthus

Aspilia sp.

plantsystematics.org

adoroplantas.com
COMPOSITAE

generalists

Cirsium helenioides with various visitors on the heads:

- *Zygaena* - moth
- *Melanargia* - butterfly
- *Bombus* - bumblebee

Leins & Erbar 2010
CAPITULUM: high genetic diversity among seeds

(adapted from Hess 1983)
COMPOSITAE

dispersion
Fawcett et al. (2009) and Soltis et al. (2009): genome doubling helped numerous plant lineages survive mass extinctions.

The modern polyploidy paradigm attributes enormous genomic versatility and concomitant evolutionary success to polyploid lineages.

- hexaploid event
- duplication events previously reported (e.g. Cui et al. 2006)
- 2 ancient groups of WGDs (whole-genome duplications): 319 m.a. and 192 m.a. (Jiao et al. 2011)
All branches have Bayesian position probabilities ≥ 0.95 and ML bootstrap $\geq 75%$
Thanks!

To USP, CNPq and FAPESP.
To my students and collaborators.

Let’s have a good Compositae Meeting!