

Genetic Synthesis and Assembly Tools for Synthetic Biology

BIOEN Workshop on Synthetic Biology October 26-27, 2010 São Paulo, Brazil

Todd Peterson, Ph.D. VP Genomics Technologies R&D

Presentation Overview

- Emerging field of synthetic biology
 - Technology Drivers/Applications
 - Integrated technologies
- Gene synthesis
 - Process
 - Market considerations
- Error correction
- Assembly technologies and genetic editing
 - Micro-editing
 - In vitro assembly
 - High order assembly in yeast

Technology Drivers & Synthetic Biology

Converging Technologies

Understanding & Design Ability to Read & Write DNA

Longest Published Synthetic DNA

Rob Carlson, 2010 www.synthesis.cc

2000

Year

2005

2010

2015

Molecular/Cell Biology Microbiology

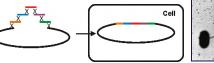
DNA Sequencing Meta-Genomics

DNA Synthesis

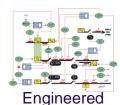
Tools Revolution

Engineering

Bioinformatics Systems and Computational Biology


Industrial Microbiology Chemical Engineering Fermentation Science

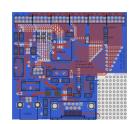
Synthetic Biology



Engineered Hosts

•

Gene/Chromosome Assembly/Transfer Tools


Genetic Circuits

Genetic/Biochemical

Pathways

Predictive BioCAD/FAB Optimized Applications

Design Engineering

Length in Base Pairs

10000000

1000000

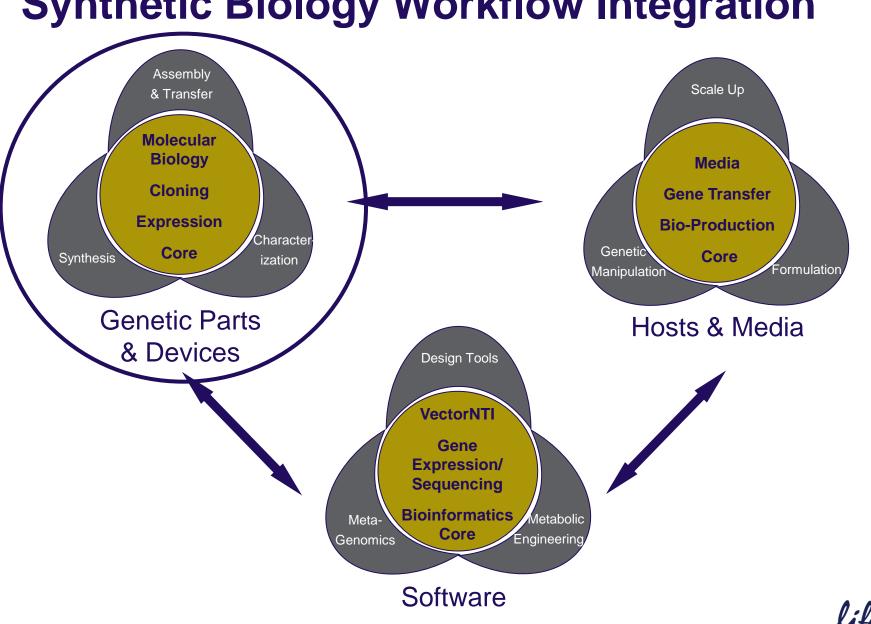
100000

10000

1000

100

1975


Synthetic Biology

- Engineering life for useful purposes
- A rapidly growing field of research: a new approach to life sciences
- Multi-disciplinary: Engineering, biology & informatics converge
- Cutting edge research and development tools
- Enable broad industrial applications

Standardized Parts Engineered Hosts Synthesis & Assembly Tools Computational Design Software Analytical Tools

Synthetic Biology Workflow Integration

Gene Synthesis: Foundational Technology for Synthetic Biology

Key Considerations

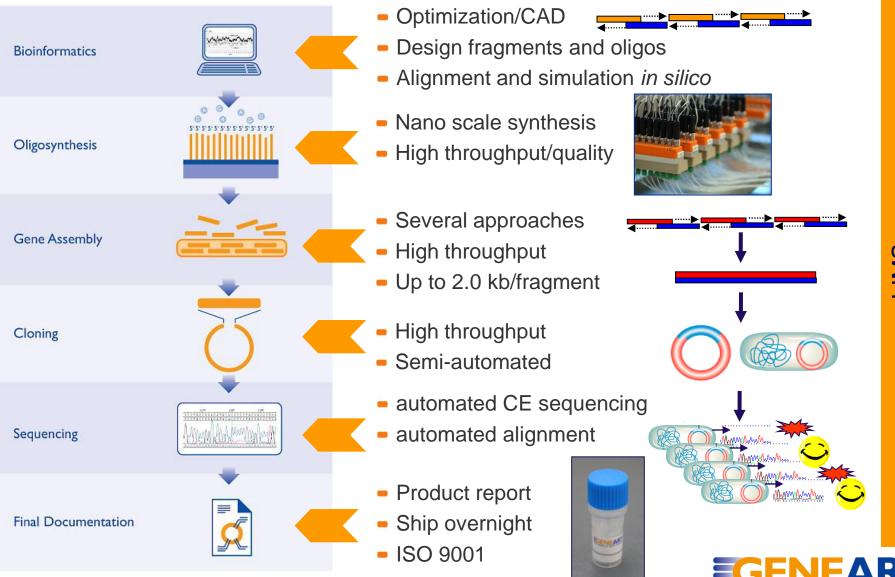
- Highest quality
- Ability to synthesize difficult sequences
- State-of-the-art design/optimization
- Cost effective

- Delivery time
- Scale and capacity
- Market and brand leadership
- Synthetic biology vision

 genomeweb
 GenomeWeb Daily News

 Life Technologies Takes Majority Stake in GENEART
 EGENEART

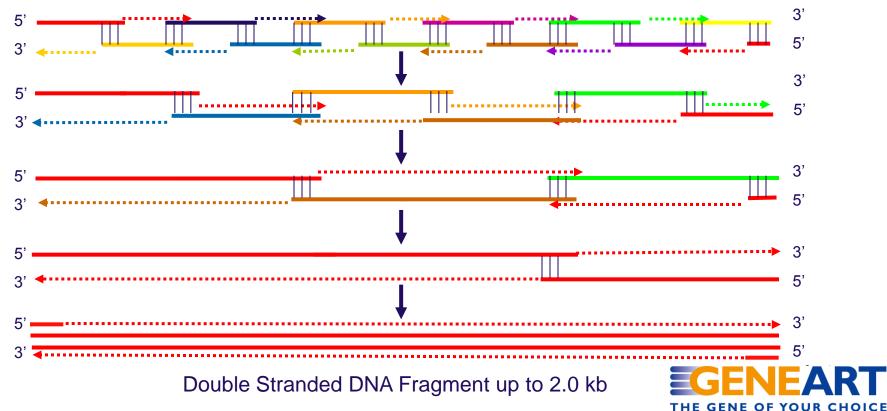
 April 09, 2010
 Free Gene of Your Choice


 Life technologies
 Press Releases

Life Technologies Completes Tender Offer for Synthetic Biology Firm Geneart Establishes Leadership Position in Emerging Field May 28, 2010

Anticipate acquisition will be completed Q4 2010

Technology and Process Overview

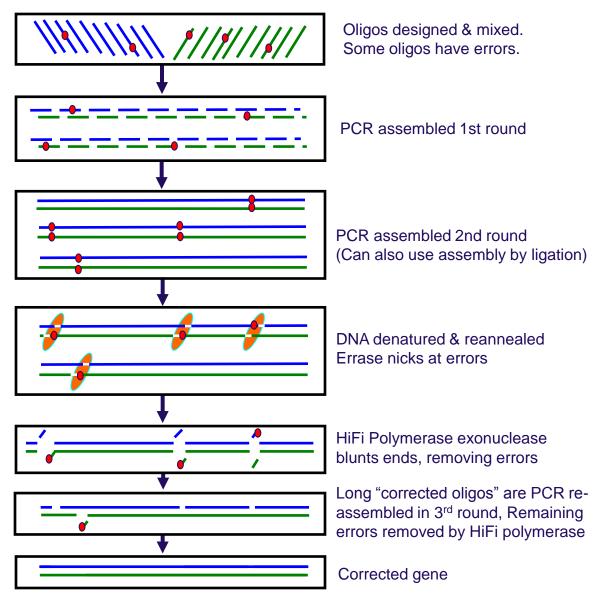


LIMS

THE GENE OF YOUR CHOICE

GENEART PCR-Extension Gene Synthesis:

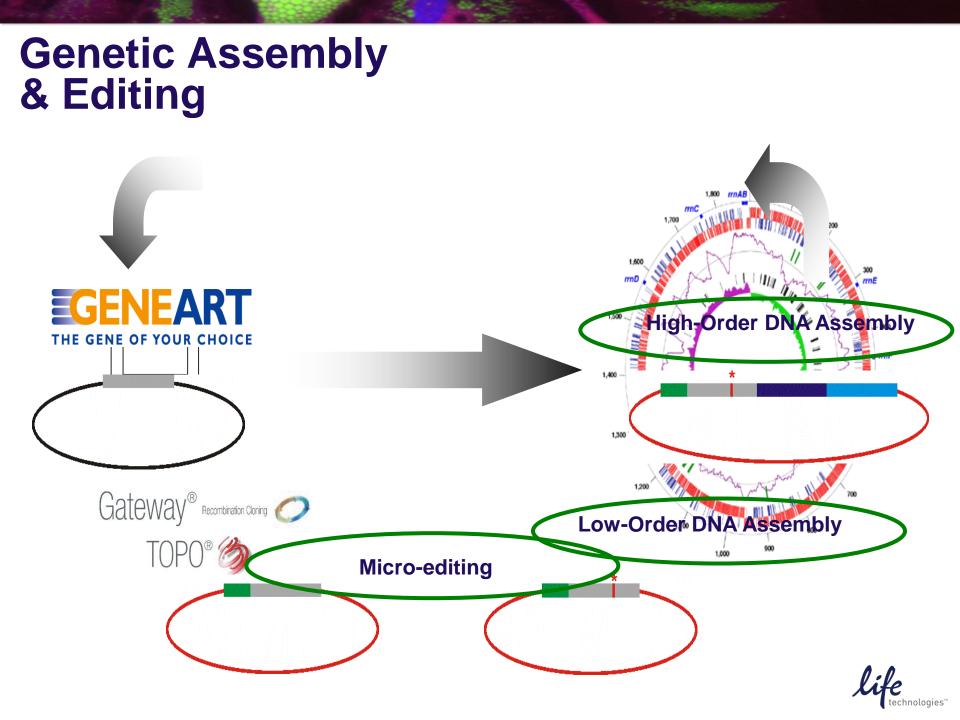
- Primary gene sequence from customer, optimization options, vector of choice
- Single-strand oligonucleotide ~40-45mer tiles are designed, synthesized & pooled
- Tile pools are amplified by PCR in two rounds:
 - All oligonucleotide tiles
 - Terminal Primers
- Assembled fragment is cloned and sequenced


Gene (and Larger) Synthesis Considerations

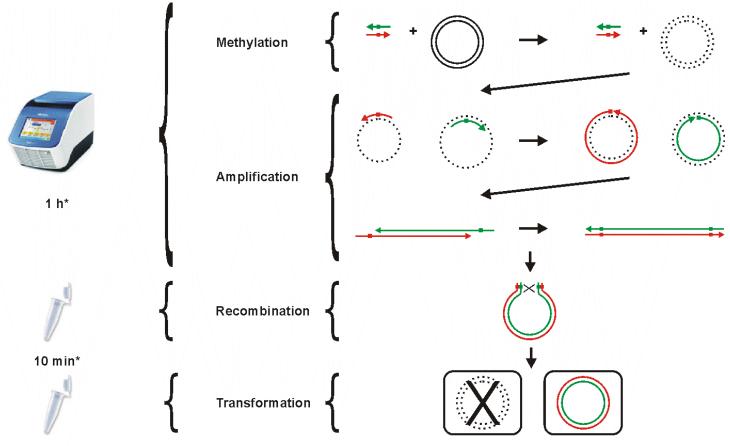
- The quality bar is already set ordered DNA is sequence verified
- Trending toward larger/complex constructs and "limited libraries"
- Parameters influencing quality, capacity and cost at scale
 - Reagents and chemicals
 - Process consumables
 - Automation and LIMS
 - Leveraging gene-synthesis associated Services
- Cost efficiencies and capacity driven by:
 - Oligonucleotide synthesis quality and low scale
 - Gene and construct assembly methods
 - Sequencing and reducing error rate

Life Technologies Signs Exclusive License Agreement for DNA Error-Correction Technology from Novici Biotech LLC October 11, 2010

ErrASE Synthetic Gene Assembly Method

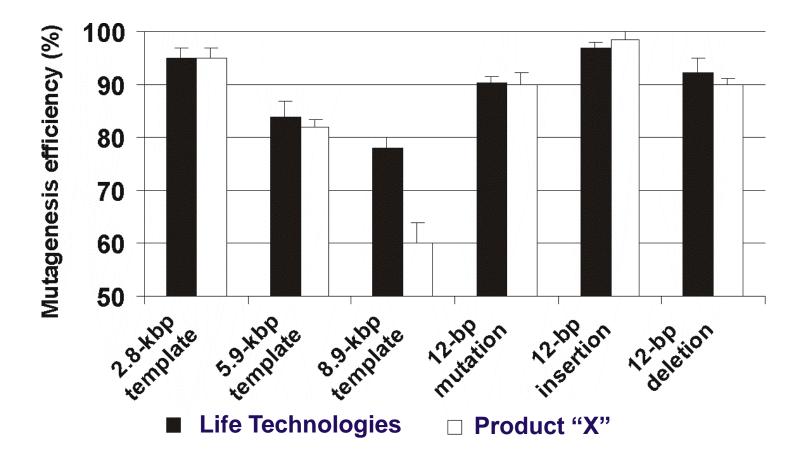

Errase Synthetic Gene Error Correction

Gene	Length	# Bases Sequenced	Deletion	Insertion	Base change	Error Rate (bases/error)
1	717	10,870	2	0	0	5,435
2	291	6,024	1	0	0	6,024
3	1,048	7,336	1	0	1	3,668
4	1,158	28,650	6	1	4	2,605
5	1080	13,960	1	0	2	4,653
6	891	8,370	4	2	0	1,395
6 (no Errase)	891	25,740	52	2	7	422
GFP	732	16,790	4	0	0	4,198
GFP (no Errase)	732	16,790	44	1	5	336


No detectable preference or bias to error correction

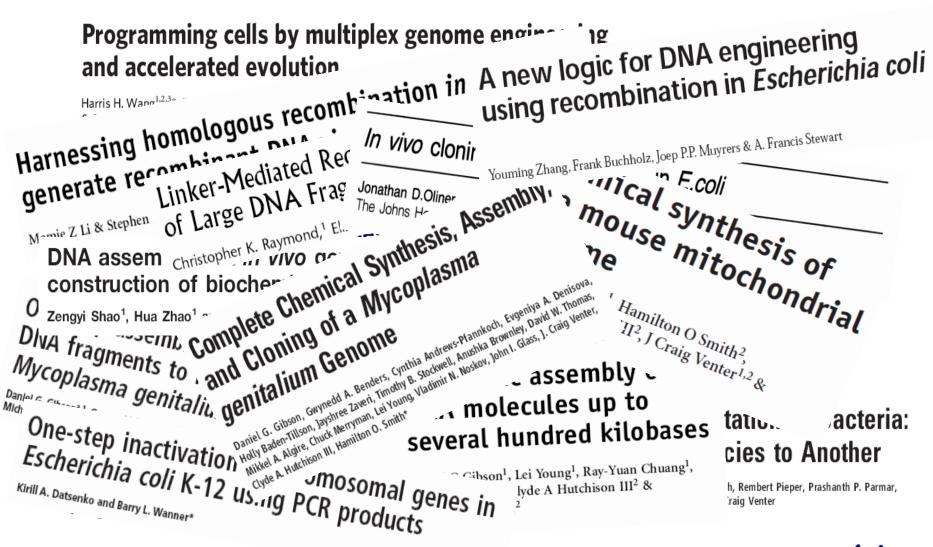
Micro-Editing: Improved Site-Directed Mutagenesis

GENEART® Site Directed Mutagenesis - Workflow

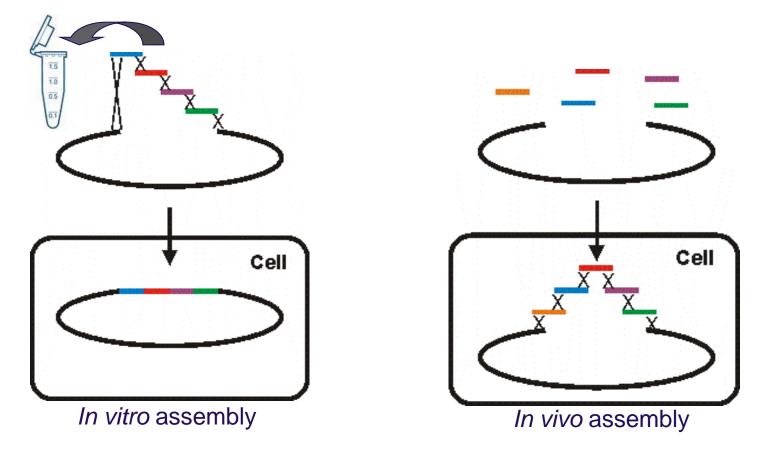


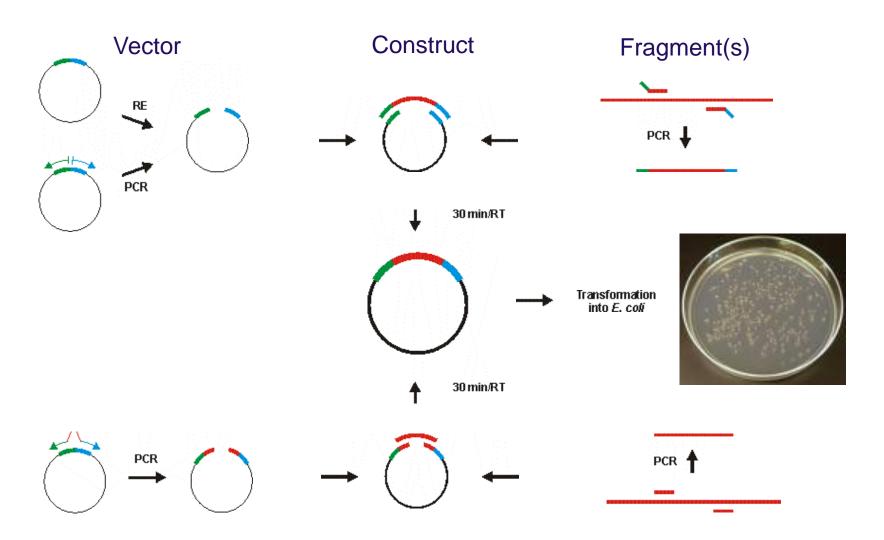
15 min*

*for a 3-kb ampicillin resistant plasmid

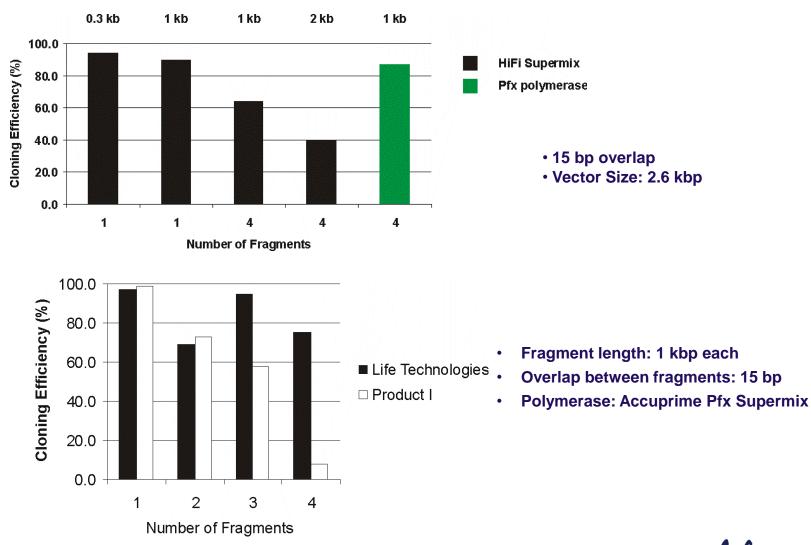


GENEART® Site Directed Mutagenesis: Performance

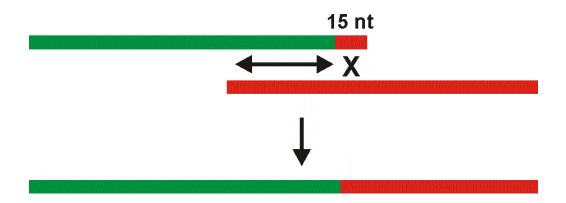

Assembly/Engineering Technologies for Synthetic Biology

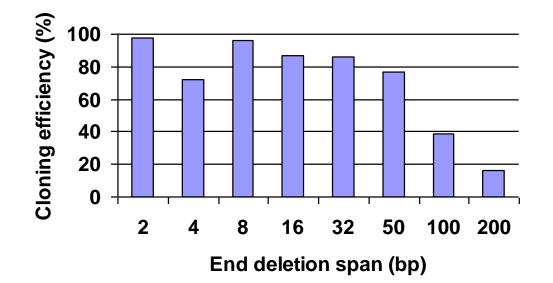

Simple Version of Assembly Solutions

- Design, fabricate or prepare fragments for assembly with terminal homology
- In vitro assembly: creation/stabilization of hybridized termini and transformation
- In vivo assembly: high-fidelity/efficiency homologous recombination

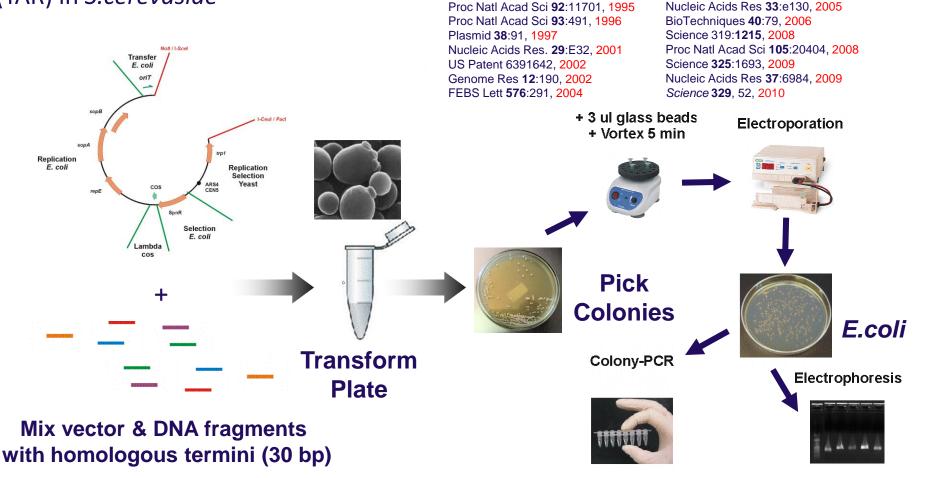

In Vitro Assembly Approach

Only 15 bp of terminal homology required




Seamless Cloning: 4 Fragments into a Vector

In Vitro Recombination: End Deletions/Editing



In Vivo Assembly Approach

Transformation-Associated Recombination

(TAR) in *S.cerevasiae*

Yeast. 10:93, 1994

Mol Plant Microbe Interact 17:571, 2004

Multiple Fragment Assembly in Yeast

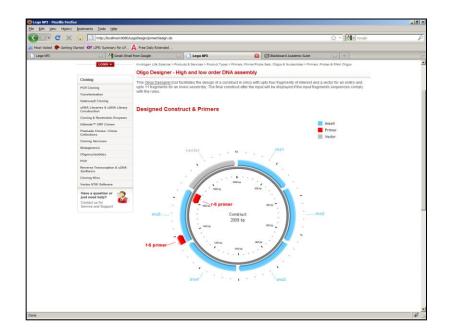
No fragments	No/size <u>preexisting</u> fragments	No/size <u>amplified</u> fragments	Overlap	Amt Insert (ng)	Colony output	Cloning efficiency
3	3 x 30 kb	0	80 bp	100	4000	100%
5	5 x 50 kb	0	80 bp	100	1400	100%
10	10 x 10 kb	0	80 bp	100	670	50%
20	8 x 10 kb	12 x 0.5-2.5 kb	80 bp	100	660	58%
20	8 x 10 kb	12 x 0.5-2.5 kb	80 bp	200	770	83%

Assembly Type	Fragment Overlap	Colony Output	Cloning Efficiency
1 x 10 kb	80 bp	1140	100%
1 x 10 kb	30 bp	1160	100%
10 x 5 kb	30 bp	1850	92%

Bridging Oligos:

Perfect/Imperfect Junction Assembly

- No homology between adjacent fragments to be joined
- Homology provided in *trans* by designed bridge oligonucleotides
- Allows for reuse of fragments in a new sequence context
- Allows for junction editing


Perfect Junctions	Oligo	Colony #	Cloning Efficiency
$\frac{x}{x} \frac{x}{x} \frac{x}{x} \frac{x}{x}$	60mer	2685	94%
$\frac{\overline{x}}{\overline{x}} \frac{\overline{x}}{\overline{x}} \frac{\overline{x}}{\overline{x}} \frac{\overline{x}}{\overline{x}} \frac{\overline{x}}{\overline{x}} \frac{\overline{x}}{\overline{x}}$	80mer	1240	75%
Deletion Junctions (12 bases)			
x x x x x x x x	60mer	520	25%
Insertion Junctions (30-X-30)			63%
	10 bp	460	03 70
<u> </u>	20 bp	430	50%
0			

Claning

Web Assembly Design Tools

- Designs DNA oligonucleotides for PCR primers and/or junction bridging
- Automated checks for potential homology issues during assembly
- Delivers final construct maps & the DNA oligonucleotides for assembly

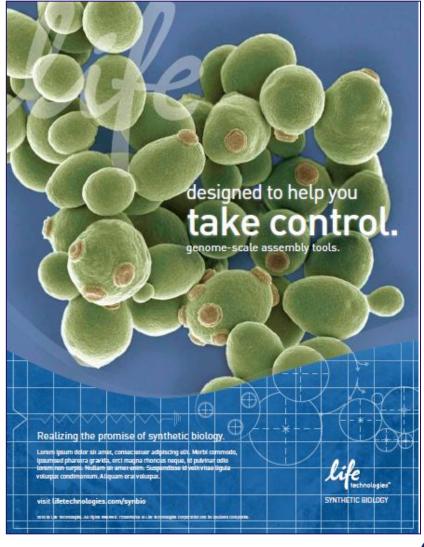
ost Visited 🥐 Getting Started 🤇	3! LIFE: Summary for	Lif A Free Daily Exte	ended			
.ego NPI	🖂 👌 🔡 Gmail:	Email from Google		C Lego NPI	Blackboard Academic Suite	8
	Oligo Desi	gner - High and k	ow orde	r DNA assembly		
Cloning	You have chos	en invitro assembly typ	e and circu	alar product type. To continue, upload ti	he sequences for your experiment one	e by one
PCR Cloning	using the uploa	ad sequences button be	elow and cl	ick the Next button. The first upload sec	uence will be a vector	
Transformation						
Gateway® Cloning				nd in the input sequences if you still we	ould like to continue,proceed by clickin	ng the
cDNA Libraries & cDNA Library Construction	The pre-exist		do not have	enough homology at the terminal end		
Cloning & Restriction Enzymes				enough homology at the terminal end		
Ultimate [™] ORF Clones						
Premade Clones / Clone Collections						
Cloning Services						
Mutagenesis	Fragment #	Fragment Type	Sequ	ience	Upload Sequence	PCR
Oligonuoleotides	0	Vector			Browse	
PCR				CACCACACCCACACACCCACACAC		ter.
Reverse Transcription & cDNA Synthesis			CAC	ACCACACACCACACCACCACAC	1	
Cloning Mise	1	AAD44166.2			Browse	
Vector NTI® Software				CACCACACCCACACACCCACACAC		10
Have a question or just need help?			_			1 0
Contact us for Service and Support	2	AAD44166.3	CCA	CACCACACCCACACACCCACACAC ACCACACACCACACACCAC	Browse	L
	3	AAD44166.4			Browse	
				CACCACACCCACACACCCACACAC ACCACACCACCACACCAC		No.
	4	AAD44166.5				-
	5	AAD44166.5				

www.invitrogen.com/DNAassembly

Assembly Technologies Summary

In vitro DNA assembly

- Up to 4 fragments plus vector
- Seamless (no scars)
- Terminal homology, 15 bp overlaps
- Unmodified oligos/primers
- Constructs up to 15 kb
- Vector-independent
- Isothermal
- 30 minute
- Single tube reaction
- High-fidelity DNA polymerase
- Kitted controls & comp *E. coli* cells *
- Web design tools


In vivo (high order) DNA assembly

- Up to 20 fragments plus vector
- Seamless (no scars)
 - Terminal homology of 30 bp overlaps
- Unmodified oligos/primers
- High-fidelity DNA polymerase
- Constructs up to 100 kb
- Patented yeast homologous recombination
- Shuttle vector: yeast assembly/*E. coli* propagation
- Bridging oligonucleotide option allows reuse of fragments and junction editing
- Yeast-*E. coli* transfer (10 min), no liquid culture
- Kitted controls, comp yeast & electrocomp *E.coli*
- Web design tools

Acknowledgements

- Gene Synthesis
 - Ralf Wagner/Geneart
- Error Correction
 - Jason Potter
 - Hal Padgett/Novici
- Site Directed Mutagenesis
 - Xiquan Liang
- In Vitro Assembly
 - Billyanna Tsvetanova
 - Federico Katzen
- In Vivo Assembly
 - Lansha Peng
 - Ke Li

