Synthetic pathways for aromatics production from biobased feedstock

Harald Ruijssenaars

BIRD Engineering

Delft-Schiedam, The Netherlands

BIRD Engineering

Contract research company in Delft, The Netherlands

- fermentation / medium optimization services
- strain development services (yeast; bacteria)
- non-food market (biofuels, bio-based chemicals)

Collaboration / Customers

- (a.o.) Mascoma, Amyris, DSM, Tate&Lyle, Nedalco, Applikon, Heineken
- Delft University of Technology
- Knowledge networks: Kluyver Centre, BE-Basic, CLIB (Germany), SIM (USA)

Substituted (hydroxy-)aromatics

•many & diverse applications, *e.g.*, in plastics (LCP's), resins, fibers

•fossil-based

•often difficult to synthesize chemically

•improved / novel functionality with biotech

Product toxicity aromatics

Challenge for bioproduction:

- hydrophobic molecules ("solvents")
- •accumulation in cell membrane: cell death

Solvent tolerant host: Pseudomonas putida S12

Grows in presence of:

- •2nd phase of toluene (7.2 mM in water phase)
- •2nd phase of 1-octanol (4.2 mM)
- •benzene (mutant up to 25 mM near saturation)
- •butanol (up to 6 %)

Volkers et al., Env. Microbiol. Rep. (2010) 456-60 Rühl et al., AEM 75 (2009) 4653-6

Synthetic pathways for aromatics synthesis in P. putida S12

Native pathways: aromatic amino acid synthesis

L-phenylalanine and L-tyrosine as 'base compounds' for production of non-native ('synthetic') aromatics

Product formation

Product formation

Wierckx et al., J. Bacteriol. 2008

Product formation

Nijkamp et al., Appl. Microbiol. Biotechnol. 2005

Verhoef et al., J. Biotechnol. 2007

Nijkamp et al., Appl. Microbiol. Biotechnol. 2007

Verhoef et al., AEM. 2009

Product formation – synthetic network improvement

Wierckx et al., J. Bacteriol. 2008 Wierckx et al., J. Biotechnol. 2009

Feedstock use

Biobased feedstock

•multiple components: LC hydrolysate -> glc, xyl, ara, other sugars

•inhibitors: acetate, furaldehydes, aromatics

glucose	35.4 %	+
xylose	20.2 %	-
arabinose	2.4 %	-
uronic acid	2.5 %	+
org. acids (Ac ⁻ , formate)	4.8 %	+
furaldehydes (HMF, furfural)	0.7 %	-
aromatics (lignin)	19.2 %	+/-

WT P. putida S12

Synthetic biology:

optimize efficient feedstock use

Oxidative / phosphorylative xylose utilization

Xylose utilization - 1

Oxidative xylose pathway Caulobacter crescentus

Xylose utilization - 2

Phosphorylative xylose pathway E. coli

Molecular basis improved xylose utilization phenotype?

B-Basic Bic-based Statalinable Industrial Chemistry extensive "rewiring" of the metabolic network!

Transcriptomics evolved xylose utilizing phenotype

* mutated glc transporter

Transcriptomics evolved xylose utilizing phenotype

Transcriptomics evolved xylose utilizing phenotype

Furaldehyde metabolism

Degradation products of pentoses (furfural) or hexoses (HMF) Toxic fermentation inhibitors / carbon loss No (genetic) characterization of catabolic pathways Few microorganisms known to degrade furaldehydes

Wierckx et al. (2010) Microb Biotechnol 3: 336-343

Furaldehyde metabolism

Novel furfural / HMF degrading bacterium isolated: Cupriavidus basilensis HMF14

- Gram⁻ bacterium
- Mesophilic (<38 °C), neutrophilic aerobe
- Growth on HMF, furfural, aromatics, <u>NO sugars</u>
- PHA production

Identify HMF-furfural degradation genes by transposon mutagenesis

Wierckx et al. (2010) Microb Biotechnol 3: 336-343

Transposon mutagenesis

- Random insertions in genome:
- Screen for HMF⁻ or furfural⁻ mutants:
- Identify transposition loci:

14.000 clones

25 clones

8 genes in 2 clusters

functional analysis of gene clusters

functional analysis of gene clusters

functional analysis of gene clusters

Furaldehyde metabolism in P. putida S12

	µ (h ⁻¹)	Y _{xs} (%)	
hmfABCDE	0.30	51	growth on furfural
hmfABCDE + hmfFGH	0.23	40	growth on HMF (and furfural)
		<u>WT P. putida S12</u>	engineered P. putida S12
glucose	35.4 %	+	+
xylose	20.2 %	-	+
arabinose	2.4 %	-	+
uronic acid	2.5 %	+	+
org. acids (Ac ⁻ , formate)	4.8 %	+	+
furaldehydes (HMF, furfural)	0.7 %	-	+
aromatics (lignin)	19.2 %	+/-	+/-

Summary and conclusions - 1

Synthetic pathways constructed in *P. putida* S12 for:

production of various aromatic products

•combined heterologous / endogenous activities / gene deletions

•utilization of xylose (+ arabinose)

oxidative / phosphorylative

•utilization (detoxification) of furaldehydes

 novel pathway / genes isolated and characterized from environmental isolate

Summary and conclusions - 2

Synthetic pathways may be:

•complete heterologous pathways

hybrid heterologous / endogenous pathways

•"short-circuited" endogenous pathways

Synthetic pathways commonly need optimization•improve metabolic flux towards (unnatural) product

•"rewiring" primary metabolic network

System-wide disturbance: optimization requires system-wide approach
targeted / rational: extensive systems biology input (still underdeveloped)
semi-targeted / random; classical strain improvement / evolutionary selection combined with system-wide analysis: pragmatic

Acknowledgements

Nick Wierckx Jean-Paul Meijnen Frank Koopman Suzanne Verhoef

Kluyver ICENTRE | Kluyver Centre for Genomics of Industrial Fermentation

TU Dortmund

Lars Blank, Andreas Schmid

Technische Universiteit Delft

TUDelft

Han de Winde